
DOCKER COMMANDS: A CHEAT SHEET

Containerization technologies have revolutionized the software development landscape. By
allowing developers to package applications and their dependencies into isolated environments
known as containers, they have simplified the development process, enabling applications to run
consistently across various environments. Docker is one such example of a leading platform in the
containerization space.

What does Docker do?
Docker’s purpose is to build and manage compute images and to launch them in a container. Docker
enables managing microservices, facilitating efficient resource utilization, and accelerating
application delivery, making it a vital tool for modern DevOps practices.

Here’s a cheat sheet on the top Docker commands to
know and use.

(This is part of our Docker Guide. Use the right-hand menu to navigate.)

https://blogs.bmc.com/blogs/docker-101-introduction/
https://blogs.bmc.com/blogs/docker-101-introduction/


Images and containers
The docker command line interface follows this pattern:
docker <COMMAND>

docker images
docker container

The docker images and container commands grant access to the images and containers. From here,
you are permitted to do something with them, hence:

docker images <COMMAND>
Docker container <COMMAND>

There are some basic docker commands:

is lists the resources.
cp copies files/folders between the container and the local file system.
create creates new container.
diff inspects changes to files or directories in a running container.
logs fetches the logs of a container.
pause pauses all processes within one or more containers.
rename renames a container.
run runs a new command in a container.
start starts one or more stopped containers.
stop stops one or more running containers.
stats displays a livestream of containers resource usage statistics.
top displays the running processes of a container.

View resources with ls
docker images ls
docker container ls

From the container ls command, the container id can be accessed (first column).



Control timing with start, stop, restart, prune
start starts one or more stopped containers.
stop stops one or more running containers.
restart restarts one or more containers.
prune (the best one!) removes all stopped containers.

docker container stop <container id>
docker container start <container id>
docker container restart <container id>
docker container prune <container id>

Name a container
docker run -d -name myfirstcontainer

View vital information: Inspect, stats, top
docker container inspect <container id>

docker container top <container id>

docker container stats <container id>

stats displays a live stream of container(s) resource usage statistics

top displays the running processes of a container:

inspect displays detailed information on one or more containers. With inspect, a JSON is
returned detailing the name and states and more of a container.



Additional resources
For more on this topic, there’s always the Docker documentation, the BMC DevOps Blog, and these
articles:

Getting Started with Containers and Microservices for Enterprise Leaders
How To Introduce Docker Containers in The Enterprise
Docker Management Tips
Docker Monitoring: How to Monitor Containers and Microservices
Containers Aren’t Always the Solution

https://docs.docker.com/engine/reference/commandline/cli/
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/getting-started-containers-microservices/
https://blogs.bmc.com/blogs/3-steps-to-introduce-docker-containers-in-enterprise/
https://blogs.bmc.com/blogs/got-docker-4-docker-management-tips/
https://blogs.bmc.com/blogs/docker-monitoring-explained-monitor-containers-microservices/
https://blogs.bmc.com/blogs/containers-solution/

