
DOCKER CMD VS. ENTRYPOINT: WHAT’S THE DIFFERENCE AND
HOW TO CHOOSE

CMD and ENTRYPOINT are two Dockerfile instructions that together define the command that runs
when your container starts. You must use these instructions in your Dockerfiles so that users can
easily interact with your images. Because CMD and ENTRYPOINT work in tandem, they can often be
confusing to understand. This article helps eliminate any potential disparity in this realm.

In a cloud-native setup, Docker containers are essential elements that ensure an application runs
effectively across different computing environments. These containers are meant to carry specific
tasks and processes of an application workflow and are supported by Docker images.

The images, on the other hand, are run by executing Docker instructions through a Dockerfile. There
are three types of instructions (commands) that you use to build and run Dockerfiles:

RUN. Mainly used to build images and install applications and packages, RUN builds a new
layer over an existing image by committing the results.
CMD. Sets default parameters that can be overridden from the Docker Command Line
Interface (CLI) when a container is running.
ENTRYPOINT. Default parameters that cannot be overridden when Docker Containers run with
CLI parameters.

Any Docker image must have an ENTRYPOINT or CMD declaration for a container to start. Though
the ENTRYPOINT and CMD instructions may seem similar at first glance, there are fundamental
differences in how they build container images.

(This is part of our Docker Guide. Use the right-hand menu to navigate.)

https://blogs.bmc.com/blogs/cloud-native-devops/
https://blogs.bmc.com/blogs/what-is-a-container-containerization-explained/
https://blogs.bmc.com/blogs/docker-101-introduction/

Shell form vs. executable form
First, we need to understand how a Docker Daemon processes instructions once they are passed.

All Docker instruction types (commands) can be specified in either shell or exec forms. Let’s build a
sample Dockerfile to understand these two commands.

(Explore more Docker commands.)

Shell command form
As the name suggests, a shell form of instructions initiate processes that run within the shell. To
execute this, invoke /bin/sh -c <command>.

Typically, every execution through a shell command requires environment variables to go through
validation before returning the results.

Syntaxes of shell commands are specified in the form:
<instruction> <command>
Examples of shell form commands include:

RUN yum -y update
RUN yum -y install httpd
COPY ./index.html/var/www/index.html
CMD echo “Hello World”

A Dockerfile named Darwin that uses the shell command will have the following specifications:

ENV name Darwin
ENTRYPOINT /bin/echo "Welcome, $name"

(The command specifications used above are for reference. You can include any other shell
command based on your own requirements.)

Based on the specification above, the output of the docker run-it Darwin command will be:

Welcome, Darwin

This command form directs the shell to go through validation before returning results, which often
leads to performance bottlenecks. As a result, shell forms are usually not a preferred method unless
there are specific command/environment validation requirements.

Executable command form
Unlike the shell command type, an instruction written in executable form directly runs the
executable binaries, without going through shell validation and processing.

Executable command syntaxes are specified in the form:

<instruction>

Examples of executable commands include:

RUN

https://blogs.bmc.com/blogs/docker-commands/

CMD
COPY

To build a Dockerfile named Darwin in exec form:

ENV name Darwin
ENTRYPOINT

Because this avoids a shell processing, the output of the docker run -it Darwin command will be
returned as: Welcome, $name.

This is because the environment variable is not substituted in the Dockerfile. To run bash in exec
form, specify /bin/bash as executable, i.e.:

ENV name Darwin
ENTRYPOINT

This prompts shell processing, so the output of the Dockerfile will be: Welcome, Darwin.

Commands in a containerized setup are essential instructions that are passed to the operating
environment for a desired output. It is of utmost importance to use the right command form for
passing instructions in order to:

Return the desired result
Ensure that you don’t push the environment into unnecessary processing, thereby impacting
operational efficiency

Interested in Enterprise DevOps? Learn more about DevOps Solutions and Tools with BMC. ›

CMD vs. ENTRYPOINT: Fundamental differences
CMD and ENTRYPOINT instructions have fundamental differences in how they function, making
each one suitable for different applications, environments, and scenarios.

They both specify programs that execute when the container starts running, but:

CMD commands are ignored by Daemon when there are parameters stated within the docker
run command.
ENTRYPOINT instructions are not ignored, but instead, are appended as command-line
parameters by treating those as arguments of the command.

Next, let’s take a closer look. We’ll use both command forms to go through the different stages of
running a Docker container.

Docker CMD
Docker CMD commands are passed through a Dockerfile that consists of:

https://blogs.bmc.com/it-solutions/devops.html

Instructions on building a Docker image
Default binaries for running a container over the image

With a CMD instruction type, a default command/program executes even if no command is
specified in the CLI.

Ideally, there should be a single CMD command within a Dockerfile. For example, where there are
multiple CMD commands in a Dockerfile, all except the last one are ignored for execution.

An essential feature of a CMD command is its ability to be overridden. This allows users to execute
commands through the CLI to override CMD instructions within a Dockerfile.

A Docker CMD instruction can be written in both Shell and Exec forms as:

Exec form: CMD
Shell form: CMD command parameter1 parameter2

Stage 1. Creating a Dockerfile
When building a Dockerfile, the CMD instruction specifies the default program that will execute
once the container runs. A quick point to note: CMD commands will only be utilized when
command-line arguments are missing.

We’ll look at a Dockerfile named Darwin with CMD instructions and analyze its behavior.

The Dockerfile specifications for Darwin are:

FROM centos:7
RUN apt-get update
RUN apt-get -y install python
COPY ./opt/source code
CMD

The CMD instruction in the file above echoes the message Hello, Darwin when the container is
started without a CLI argument.

Stage 2. Building an image
Docker images are built from Dockerfiles using the command:

$ docker build -t Darwin .

The above command does two things:

Tells the Docker Daemon to build an image
Sets the tag name to Darwin located within the current directory

Stage 3. Running a Docker container
To run a Docker container, use the docker run command:

$ docker run Darwin

Since this excludes a Command-line argument, the container runs the default CMD instruction and

displays Hello, Darwin as output.

If we add an argument with the run command, it overrides the default instruction, i.e.:

$ docker run Darwin hostname

As a CMD default command gets overridden, the above command will run the container and display
the hostname, thereby ignoring the echo instruction in the Dockerfile with the following output:

6e14beead430

which is the hostname of the Darwin container.

When to use CMD
The best way to use a CMD instruction is by specifying default programs that should run when users
do not input arguments in the command line.

This instruction ensures the container is in a running state by starting an application as soon as the
container image is run. By doing so, the CMD argument loads the base image as soon as the
container starts.

Additionally, in specific use cases, a docker run command can be executed through a CLI to
override instructions specified within the Dockerfile.

Docker ENTRYPOINT
In Dockerfiles, an ENTRYPOINT instruction is used to set executables that will always run when the
container is initiated.

Unlike CMD commands, ENTRYPOINT commands cannot be ignored or overridden—even when the
container runs with command line arguments stated.

A Docker ENTRYPOINT instruction can be written in both shell and exec forms:

Exec form: ENTRYPOINT
Shell form: ENTRYPOINT command parameter1 parameter2

Stage 1. Creating a Dockerfile
ENTRYPOINT instructions are used to build Dockerfiles meant to run specific commands.

These are reference Dockerfile specifications with an Entrypoint command:

FROM centos:7
RUN apt-get update
RUN apt-get -y install python
COPY ./opt/source code
ENTRYPOINT

The above Dockerfile uses an ENTRYPOINT instruction that echoes Hello, Darwin when the
container is running.

Stage 2. Building an Image
The next step is to build a Docker image. Use the command:

$ docker build -t Darwin .

When building this image, the daemon looks for the ENTRYPOINT instruction and specifies it as a
default program that will run with or without a command-line input.

Stage 3. Running a Docker container
When running a Docker container using the Darwin image without command-line arguments, the
default ENTRYPOINT instructions are executed, echoing Hello, Darwin.

In case additional command-line arguments are introduced through the CLI, the ENTRYPOINT is not
ignored. Instead, the command-line parameters are appended as arguments for the ENTRYPOINT
command, i.e.:

$ docker run Darwin hostname

will execute the ENTRYPOINT, echoing Hello, Darwin and then displaying the hostname to return
the following output:

Hello, Darwin 6e14beead430

When to use ENTRYPOINT
ENTRYPOINT instructions are suitable for both single-purpose and multi-mode images where there
is a need for a specific command to always run when the container starts.

One of its popular use cases is building wrapper container images that encapsulate legacy
programs for containerization, which leverages an ENTRYPOINT instruction to ensure the program
will always run.

Using CMD and ENTRYPOINT instructions together
While there are fundamental differences in their operations, CMD and ENTRYPOINT instructions are
not mutually exclusive. Several scenarios may call for the use of their combined instructions in a
Dockerfile.

A very popular use case for blending them is to automate container startup tasks. In such a case, the
ENTRYPOINT instruction can be used to define the executable while using CMD to define
parameters.

Let’s walk through this with the Darwin Dockerfile, with its specifications as:

FROM centos:7
RUN apt-get update
RUN apt-get -y install python
COPY ./opt/source code
ENTRYPOINT CMD

The image is then built with the command:

$ docker build -t darwin .

If we run the container without CLI parameters, it will echo the message Hello, Darwin.

Appending the command with a parameter, such as Username, will override the CMD instruction,
and execute only the ENTRYPOINT instruction using the CLI parameters as arguments. For example,
the command:

$ docker run Darwin User_JDArwin

will return the output:

Hello User_JDArwin

This is because the ENTRYPOINT instructions cannot be ignored, while with CMD, the command-line
arguments override the instruction.

Scale operational effectiveness with an artificial intelligence for IT operations. Learn more about
AIOps with BMC! ›

Using ENTRYPOINT or CMD
Both ENTRYPOINT and CMD are essential for building and running Dockerfiles—it simply depends
on your use case. As a general rule of thumb:

Use ENTRYPOINT instructions when building an executable Docker image using commands
that always need to be executed.
Use CMD instructions when you need an additional set of arguments that act as default
instructions until there is explicit command-line usage when a Docker container runs.

A container image requires different elements, including runtime instructions, system tools, and
libraries to run an application. To get the best out of a Docker setup, it is strongly advised that your
administrators understand various functions, structures, and applications of these instructions, as
they are critical functions that help you build images and run containers efficiently.

Related reading
BMC DevOps Blog
Docker Security: 14 Best Practices for Securing Docker Containers
Kubernetes vs Docker: A Quick Comparison
How To Run MongoDB as a Docker Container
How Containers Fit in a DevOps Delivery Pipeline
The State of Containers Today: A Report Summary

https://blogs.bmc.com/it-solutions/bmc-helix-operations-management.html
https://blogs.bmc.com/it-solutions/bmc-helix-operations-management.html
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/docker-security-best-practices/
https://blogs.bmc.com/blogs/kubernetes-vs-docker/
https://blogs.bmc.com/blogs/mongodb-docker-container/
https://blogs.bmc.com/blogs/devops-containers/
https://blogs.bmc.com/blogs/state-of-containers/

