
INTRODUCTION TO DOCKER: A BEGINNER’S GUIDE

Docker is one of the most popular tools for application
containerization. Docker enables efficiency and reduces operational
overheads so that any developer, in any dev environment, can build
stable and reliable applications.

Let’s take a look at Docker, starting with application development before Docker.

(This is part of our Docker Guide. Use the right-hand menu to navigate.)

App development today
One common challenge for DevOps teams is managing an application’s dependencies and
technology stack across various cloud and development environments. As part of their routine tasks,
they must keep the application operational and stable—regardless of the underlying platform that it
runs on.

Development teams, on the other hand, focus on releasing new features and updates.
Unfortunately, these often compromise the application’s stability by deploying codes that introduce
environment-dependent bugs.

To avoid this inefficiency, organizations are increasingly adopting a containerized framework that
allows designing a stable framework without adding:

Complexities
Security vulnerabilities
Operational loose ends

https://blogs.bmc.com/blogs/docker-101-introduction/
https://blogs.bmc.com/blogs/devops-basics-introduction/
https://blogs.bmc.com/blogs/it-teams/
https://blogs.bmc.com/blogs/what-is-a-container-containerization-explained/


Put simply, containerization is the process of packaging an application's code—with dependencies,
libraries, and configuration files that the application needs to launch and operate efficiently—into a
standalone executable unit.

Initially, containers didn’t gain much prominence, mostly due to usability issues. However, since
Docker entered the scene by addressing these challenges, containers have become practically
mainstream.

What is Docker?
Docker is a Linux-based, open-source containerization platform that developers use to build, run,
and package applications for deployment using containers. Unlike virtual machines, Docker
containers offer:

OS-level abstraction with optimum resource utilization
Interoperability
Efficient build and test
Faster application execution

Fundamentally, Docker containers modularize an application's functionality into multiple
components that allow deploying, testing, or scaling them independently when needed.

Take, for instance, a Docker containerized database of an application. With such a framework, you
can scale or maintain the database independently from other modules/components of the
application without impacting the workloads of other critical systems.

https://blogs.bmc.com/blogs/containers-vs-virtual-machines/


Components of a Docker architecture
Docker comprises the following different components within its core architecture:

Images
Containers
Registries
Docker Engine

Images
Images are like blueprints containing instructions for creating a Docker container. Images define:

Application dependencies
The processes that should run when the application launches



You can get images from DockerHub or create your own images by including specific instructions
within a file called Dockerfile.

Containers
Containers are live instances of images on which an application or its independent modules are run.

In an object-oriented programming analogy, an image is a class and the container is an instance of
that class. This allows operational efficiency by allowing to you to multiple containers from a single
image.

Registries
A Docker registry is like a repository of images.

The default registry is the Docker Hub, a public registry that stores public and official images for
different languages and platforms. By default, a request for an image from Docker is searched within
the Docker Hub registry.

You can also own a private registry and configure it to be the default source of images for your
custom requirements.

Docker Engine
The Docker Engine is of the core components of a Docker architecture on which the application
runs. You could also consider the Docker Engine as the application that’s installed on the system
that manages containers, images, and builds.

A Docker Engine uses a client-server architecture and consists of the following sub-components:

The Docker Daemon is basically the server that runs on the host machine. It is responsible for
building and managing Docker images.
The Docker Client is a command-line interface (CLI) for sending instructions to the Docker
Daemon using special Docker commands. Though a client can run on the host machine, it
relies on Docker Engine’s REST API to connect remotely with the daemon.
A REST API supports interactions between the client and the daemon.

Benefits of Docker in the SDLC
There are numerous benefits that Docker enables across an application architecture. These are
some of the benefits that Docker brings across multiple stages of the software development
lifecycle (SDLC):

Build. Docker allows development teams to save time, effort, and money by dockerizing their
applications into single or multiple modules. By taking the initial effort to create an image
tailored for an application, a build cycle can avoid the recurring challenge of having multiple
versions of dependencies that may cause problems in production.
Testing. With Docker, you can independently test each containerized application (or its
components) without impacting other components of the application. This also enables a
secured framework by omitting tightly coupled dependencies and enabling superior fault

https://blogs.bmc.com/blogs/docker-commands/
https://blogs.bmc.com/blogs/microservice-vs-api/
https://blogs.bmc.com/blogs/resilience-engineering/


tolerance.
Deploy & maintain. Docker helps reduce the friction between teams by ensuring consistent
versions of libraries and packages are used at every stage of the development process.
Besides, deploying an already tested container eliminates the introduction of bugs into the
build process, thereby enabling an efficient migration to production.

When it comes to the enterprise use of containers, you can rest easy knowing that Docker works
with so many popular tools, including:

Kubernetes
Bitbucket
MongoDB
VMWare Tanzu
Redis
Nginx
And more!

Docker alternatives
Although Docker is one of the most popular choices for application containerization, there are
alternatives:

Containerd. Originally a tool that was part of the Docker ecosystem, this Docker alternative has
morphed into its own high-level container runtime. Unlike Docker, which handles network
plugins and overlays, Containerd abstracts these functionalities and focuses on running and
managing images.
LXC/LXD Linux Containers. An open-source containerization platform with a set of language
bindings, libraries, and tools that enables the creation and management of virtual
environments. Being tightly bound to the Linux ecosystem, its adoption rate is comparatively
limited.
Core OS rkt. Pronounced as "rocket", this is another open-source software containerization
alternative to Docker. An essential feature of rkt is that it is arguably a more secure
containerization platform that fixes some of the vulnerable flaws within Docker's design.

A few other lesser-known alternatives include OpenVz and RunC.

Docker supports business agility
The idea of an agile, consistent, and independent environment that allowed faster builds and
application interoperability turned out to be more challenging in virtual machines than initially
thought.

Thanks to Docker, an organization can now fill the gaps left by virtual machines—without duplicating
computing resources and while avoiding effort redundancy. In today’s cloud native environment,
Dockers are synonymous with application efficiency and maintainability.

No wonder organizations continue adopting Docker!

https://blogs.bmc.com/blogs/resilience-engineering/
https://blogs.bmc.com/blogs/patch-hotfix-coldfix-bugfix/
https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/
https://blogs.bmc.com/blogs/redis-basics
https://www.docker.com/
https://blogs.bmc.com/blogs/getting-started-cloud-native-applications/


Related reading
BMC DevOps Blog
Managing Containers & Code for DevOps
Docker Commands: A Cheat Sheet
Docker Security: 14 Best Practices for Securing Docker Containers
Kubernetes vs Docker Swarm: Comparing Container Orchestration Tools
State of Containers: A Report Summary

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/devops-managing-code-containers/
https://blogs.bmc.com/blogs/docker-commands/
https://blogs.bmc.com/blogs/docker-security-best-practices/
https://blogs.bmc.com/blogs/kubernetes-vs-docker-swarm/
https://blogs.bmc.com/blogs/state-of-containers/

