AGILE VS DEVOPS: A FULL COMPARISON

Agile and DevOps are the two most popular software development lifecycle (SDLC) methodologies
currently in practice.

One survey indicates that 97% of organizations use Agile, whereas the most innovative startup firms
as well as large enterprises take advantage of DevOps to deploy new code features really fast:

* AWS deploys new code every 11.7 seconds.
e Netflix deploys new code thousands of times every day!

As more organizations are eager to follow suit, it's important to carefully understand the similarities
and differences between Agile and DevOps—which is exactly what this article will help you do. We
will:

* Briefly review the history of both SDLC models
e Understand the driving factors behind Agile and DevOps
e Highlight the key differences in the two

Agile origins: From Waterfall to Agile

Let's with a recap of software development history. As software development projects grew in scale
and complexity, IT organizations needed a systematic approach to consistently deliver high quality
software at speed, while minimizing risk and cost overruns.


https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://betanews.com/2019/05/07/state-of-agile-report/
https://techbeacon.com/devops/10-companies-killing-it-devops
https://www.bizety.com/2018/07/17/how-netflix-uses-spinnaker-continuous-delivery-platform-to-support-95-of-its-aws-infrastructure/

In the 1970s, the IT industry and academia formally adopted the Waterfall SDLC model: a linear and
sequential model that flows through various stages of a standard software development project in
the following order:

¢ Requirements Gathering and Analysis
System Design

Implementation

Integration and Testing

Deployment

* Maintenance

Originating in the 1950s manufacturing industry, the Waterfall model worked well enough until most
organizations identified a few critical flaws when they actually implemented it. Common flaws of the
Waterfall model include:

 Rigidity. Requirements cannot be changed once the development process starts.

 Risk. Any flaw or inadequacy in the product is identified only at the end of the SDLC pipeline
when the project takes its final shape.

* Waste. The sequential approach is slow and channels the bottleneck across the SDLC.

* Scope. In practice, the cost and time spent on waterfall projects frequently exceeds the
expected limitations.

In 2001, a team of professional developers released the Agile Manifesto: a set of values and guiding
principles that can be used as a philosophy or a mindset to develop high quality software
components iteratively—small but frequent releases with small improvements.

Consider how the values of Agile (left) differentiate from the traditional SDLC practices and priorities
(right):

* Individuals and interactions over processes and tools
e Working software over comprehensive documentation
* Customer collaboration over contract negotiation

* Responding to change over following a plan

Agile also destroys the idea of a “finished product’, which was the goal of the Waterfall approach.
Instead, Agile believes that software development is iterative and incremental. With each new
release of software, the customer is able to either:

e Perform new functions
e Improve upon existing functions

Agile methodologies encourage developers to break down software development into small pieces
known as “user stories”. This highlights the value Agile places on the customer, which helps the
developers by both:

 Providing faster feedback loops
* Ensuring product alignment with market need

Agile further advocates for adaptive planning, evolving development, early and continuous delivery,
and continuous improvement—these all enable developers to rapidly and flexibly respond to
change in client needs, software, or other external factors.


https://blogs.bmc.com/blogs/devops-feedback-loops/

(Read our in-depth Waterfall vs Agile explainer.)



https://blogs.bmc.com/blogs/agile-vs-waterfall/

= bmce

Iterative development in short
sprints

Flexible and adaptive methodology

Feedback-based approach: Sprints
lead to short build updates that are
evaluated on and guide the future
direction of the development
process.

A provision for adaptability: Project
development requirements and
scope is expected to change over
the course of the iterative
development process.

The SDLC phases overlap and begin
early in the SDLC: planning,
requirements, designing,
developing, testing, and
maintenance.

Follows a mindset of collaboration
and communication. The
requirements, challenges, progress,
and changes are discussed
between all stakeholders on a
continuous basis.

Responsibilities and hierarchical
structure can be interchangeable
between team members.

All team members focused on end-
to-end completion (achieved
sequentially) for the projects.

Suitable for short projects in high-
risk situations.

Limited dependencies as the focus
is less on implementation specifics,
and more toward the mindset.

Sequential development process in
pre-defined phases

The process is documented and
follows the fixed structure and
requirements agreed in the
beginning of the process

Limited and delayed feedback: The
software quality and requirements
fulfilment isn't evaluated until the
final phase of the development
processes when testers and
customer feedback is requested.

The requirements and scope are
definitive once agreed upon.

The SDLC phases are followed in
order, with no overlap. Members
of one functional group are not
involved in another phase that
doesn't belong to their job
responsibilities.

Follows a project-focused mindset
with the aim of fully completing the
SDLC process.

Fixed individual responsibilities,
particularly in management
positions.

Team members focused on their
responsibilities only during their
respective SDLC phases.

Suitable for straightforward
projects in predictable
circumstances.

Strict dependencies in
technologies, processes, projects
and people.




From Agile to DevOps
Agile sounds good in theory.

In fact, Agile is easy to plan. It's easy to consider as a philosophy for organizational culture and
communication among development teams. Frameworks such as Scrum make it easier to adopt
Agile principles.

In practice, however, Agile lacks in execution and delivery. Organizations often agree to follow rapid
release cycles and conduct regular Scrum meetings, but find it challenging to adopt Agile.

One of the reasons? Agile as a guiding manifesto brings little practical advice as an SDLC process
framework in itself. Slow and tedious governance process, inadequate communication and
collaboration, lack of automation and, most importantly, the expanding divide between Devs and
Ops personnel keeps organizations from becoming truly Agile.

Instead, developers end up practicing sprints of fast Waterfall: siloed, sequential, discontinuous
development sprints that fail to iteratively improve on customer feedback.

As IT became essential to businesses in the 21st century, two imperative areas emerged: IT
Operations (ITOps) and Development Operations (DevOps):

* ITOps responsibilities include ensuring security, compliance, and reliability.
» DevOps is responsible for developing and deploying new products to the end user.

While ITOps ensures safety and security for all business needs using the network, DevOps walks a
line between flexibility and the rigorous testing and communication that comes with deploying hew
software.

DevOps is a theory rooted in communication, both within itself—as the developers and operators
have to coordinate—and also across other departments. DevOps frequently communicates with
ITOps to ensure secure and stable environments for testing. Their crossover to other teams like
marketing and customer service makes sense as they deploy new software.

(Explore our multi-part DevOps Guide.)


https://blogs.bmc.com/blogs/scrum-vs-kanban/
https://blogs.bmc.com/blogs/it-automation/
https://blogs.bmc.com/blogs/devops-basics-introduction/

Ops as laas

Dev & DBA collaboration

L >

Using DevOps & Agile together

Proponents of using both theories in appropriate business needs believe that DevOps can be seen
as an extension of Agile. Agile relies on cross-functional teams that typically include:

e A designer
* Atester
* A developer

DevOps takes this one step further by adding an operations person who can ease the transition from
software to deployment. Because of DevOps' inherent communication with other teams, DevOps
can help automate processes and improve transparency for all teams.

(Learn about various IT teams.)

Consider these similarities between Agile and DevOps:


https://blogs.bmc.com/blogs/agile-roles-responsibilities/

* Business focus. Aligning the software development process with user and market-centric
products helps drive business value.

e Collaboration. Teams at an individual and group level must communicate regularly, actively
breaking silos.

e Lean philosophy. Focus on removing waste processes, a Lean derivative, and driving value at
every stage of the SDLC pipeline.

* Continuous release cycles. Short, iterative sprints that lead to a continuous release process.
Adopt the mindset and technology capabilities that can help achieve this flexibility.

» Approach. Both Agile and DevOps are approaches—they are not hard-coded playbooks for IT
organizations to follow.

Considering these similarities, it's easy to see how many practices that results from the Agile
manifesto can be considered a subset of DevOps: collaboration, continuous improvement, and
culture.

Agile vs DevOps: Contrasting points

While we are proponents of using Agile and DevOps theories together, it is important to understand
where they clearly differ. Let's look at a few contrasting points.

Speed

Agile is all about rapid and frequent deployment, but this is rarely the goal—or even part of the
goal—for DevOps.

Creating vs deploying software

Developing software is inherent to Agile, but DevOps is concerned with the appropriate deployment
of said software.

For the record, DevOps can deploy software that was developed in any number of approaches,
including Agile and non-Agile theories, like the Waterfall approach, which is still appropriate for
certain projects.

(Explore the differences in deploying & releasing software.)

Specialization

Agile is an equal opportunity team: every member of the scrum can do every job within the team,
which prevents slowdowns and bottlenecks.

DevOps, on the other hand, assumes separate teams for development and operations. People stay
within their teams, but they all communicate frequently.

Communication

Daily, informal meetings are at the heart of Agile approaches, so each team member can share
progress, daily goals, and indicate help when needed. These scrums are not meant to go over
documentation or milestones and metrics; instead they look solely at progress and any blockers to
progress.



https://blogs.bmc.com/blogs/lean-startup-enterprise/
https://blogs.bmc.com/blogs/sprint-zero/
https://blogs.bmc.com/blogs/devops-culture/
https://blogs.bmc.com/blogs/software-deployment-vs-release/
https://blogs.bmc.com/blogs/agile-roles-responsibilities/
https://blogs.bmc.com/blogs/scrum-teams-whats-scrum-meetings/

DevOps meeting are not daily.

Documentation

Agile teams don't codify their meeting minutes or other communications, often preferring lo-fi
methods of simple pen and paper.

DevOps takes documentation seriously, requiring design documents and specs in order to fully
understand a software release.

Team size

Staying small is the core of Agile: the smaller the team, the fewer people on it, the faster they can
move, even if they are contributing to a larger effort. DevOps will have many teams that work
together and each team can realistically practice different theories.

Scheduling

Agile teams work in short, predetermined amounts of time, known as sprints. Sprints rarely last
longer than a month, and often can be as short as a week.

DevOps values maximum reliability, so they focus on a long-term schedule that minimizes business
disruptions.

Automation

Automation is the heart of DevOps, as the overall goal is to minimize disruptions and maximize
efficiency, especially when deploying software. Agile doesn't require automation.

Infrastructure as Code is another example of how DevOps streamlines the collective efforts of Devs
and Ops complying to organizational policies and governance without compromising efficiency in
the SDLC pipeline performance.

These stark differences remind us that Agile and DevOps, at their roots, are not the same.

Culture of Agile and DevOps

While Agile does not necessarily lead to DevOps, both can have profound culture shifts within an
organization.

An Agile approach encourages a change in how we think about development. Instead of thinking of
development as cumbersome, Agile thinking promotes small, manageable changes quickly that,
over time, lead to large changes. Companies of all sizes have experimented with how working in an
Agile way can boost many departments, not only IT. Today some enterprises consider themselves
fully Agile.

DevOps can also bring its own cultural shifts within an organization, including enhancing
communication and balancing stability with change and flexibility.

Choosing to use both theories is an active decision that many industry experts believe can lead to
more rational decision making, thus improving the company culture.


https://blogs.bmc.com/blogs/devops-titles-roles-responsibilities/
https://blogs.bmc.com/blogs/devops-titles-roles-responsibilities/
https://blogs.bmc.com/blogs/automation-in-devops/
https://blogs.bmc.com/blogs/infrastructure-as-code/

Related reading

e BMC DevOps Blog

Intro to Agile with Scrum: 4 Tips for Getting Started
The Complete DevOps Certifications Guide 2021-2022
Deployment Pipelines (CI/CD) in Software Engineering
How & Why To Become a Software Factory



https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/agile-scrum-getting-started/
https://blogs.bmc.com/blogs/devops-certifications/
https://blogs.bmc.com/blogs/deployment-pipeline/
https://blogs.bmc.com/blogs/software-factory/

