
TESTING IN DEVOPS: CONCEPTS, BEST PRACTICES & MORE

DevOps empowers smooth collaboration and communication between development and
operations teams in today's competitive software development environments.

In DevOps, the two teams work together, sharing responsibilities towards achieving their primary
goal: frequent and faster delivery of high-quality software that satisfies evolving customer needs.
DevOps practices, along with relevant tools and technologies, drive organizations to accomplish
tasks as efficiently as possible.

Some DevOps practices like Continuous Integration and Continuous Delivery (CI/CD) support
frequent software releases. That means that testing plays an integral part in helping to maintain
software quality at each step of the development lifecycle.

(This article is part of our DevOps Guide. Use the right-hand menu to go deeper into individual practices
and concepts.)

How traditional testing worked
Software testing is not a new concept. But testing in traditional environment looks very different
from testing in a DevOps environment.

In the days of the traditional waterfall methodology, software testing looked like this:

Spanned only one phase of the life cycle
Started after the software was developed completely
Was a manual process that was highly error-prone and took a long time to complete

https://blogs.bmc.com/blogs/what-is-ci-cd/
https://blogs.bmc.com/blogs/software-quality-metrics/
https://blogs.bmc.com/blogs/devops-basics-introduction/
https://blogs.bmc.com/blogs/agile-vs-waterfall/


A huge difference is that software testers sat on a separate team, isolated from the development
team. If any bug was detected at the testing stage, it was challenging and costly to go back and do
that change. The reason for that was structural: the particular error scenarios were to be well-
identified at the beginning.

Under these circumstances, it was difficult to maintain the required standard and quality within the
expected timeline.

Features of testing in a DevOps environment
Software testing evolved considerably over the years after Agile started its ascent. Since then, faster
and collaborative testing strategies, tools, and technologies have been introduced to the testing
sphere.

This is what testing in a DevOps environment looks like:

Testing is a continuous and automated process that enables continuous and faster delivery of
software.
Testing spans every stage of the software development lifecycle (SDLC).
Each step of the SDLC involves different forms of testing. This minimizes backtracking in the
case that you’ve detected an error.
Testing is no longer the responsibility of one particular team. Shared testing responsibilities
allow everyone to understand the impacts behind each change.

(Learn how to set up your own CI/CD pipeline.)

DevOps adopts Shift Left Testing Approach
Importantly, DevOps culture adopts the Shift Left testing approach, which contrasts with traditional
environments where testing happens at the end of the development.

Shift Left testing pushes the testing to the left, the earlier steps, of the software development
process. There, testing is also started when the development is started. This approach helps to
identify bugs as early as possible.

https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/ci-cd-pipeline-setup/
https://blogs.bmc.com/blogs/what-is-shift-left-shift-left-testing-explained


These inherent features of a DevOps testing environment contribute significantly towards improving
software quality. Still, the success or failure of the testing strategy depends on how well
organizations implement DevOps best practices for testing.

DevOps Testing Best Practices
In this section, we will go through some best practices for testing that organizations need to
embrace in order to maximize your DevOps value.

Leverage test automation (smartly)
In a DevOps environment, developers frequently merge the code to a central repository. This means
that the code updates continuously through continuous integration (CI). To prevent the risk of errors,
you have to continuously test the code through different types of tests, including:

Unit tests
Functional tests
Acceptance tests
Integration tests

As a best practice, you can automate these tests to get faster and earlier feedback on continuously
integrated code. More successful DevOps teams have a larger percentage of automated test cases,
and they have often integrated automation suites.

As you progress in the SDLC, test automation spans further from code level into areas like:

https://blogs.bmc.com/blogs/testing-frameworks-unit-functional-tdd-bdd/
https://blogs.bmc.com/blogs/testing-frameworks-unit-functional-tdd-bdd/
https://blogs.bmc.com/blogs/testing-automation/


API testing
Performance testing
Load testing
Endurance testing

This doesn't mean that everything in the testing scope should be automated. There should be some
space for manual testing. This caution is important. If you automate a test process that isn’t valuable,
you’re simply automating and introducing more waste into the process.

Recommendations for effective test automation include:

Using good, quality test data
Identifying test cases that are good candidates for automation
Running test cases in parallel to improve automation speed
Continually revising the testing plan with an up-to-date automated testing scope

Teams can often create and run more test cases to prevent bugs by utilizing test automation
intelligently.

Identify test automation engineers
While testing is a shared responsibility among every team, organizations tend to use the specific

https://blogs.bmc.com/blogs/load-testing-performance-testing-and-stress-testing-explained/
https://blogs.bmc.com/blogs/load-testing-performance-testing-and-stress-testing-explained/
https://blogs.bmc.com/blogs/what-is-parallel-testing-parallel-testing-explained/


expertise of test automation engineers to increase the percentage of test automation coverage. For
example, a dedicated team of such engineers would play a vital role in achieving automation
targets.

A good test automation engineer might be:

A former manual tester who subsequently learned to write automation scripts
A software developer who trained as an automation engineer

Test automation engineers develop the overall automation strategy of the organization. They are
responsible for:

Identifying automatable test scenarios
Creating automation scripts using a chosen test automation framework
Finding the tool that best fits your team or organization’s testing approach

Typically, during a software release, the automation engineer takes ownership in executing
automated tests on the related environment and reporting any identified bugs. Then they work
closely with the development teams to find the solutions to resolve those bugs. As part of their
work, they clean up existing test cases according to the new changes introduced to the system.

You can see how test automation engineers contribute to leveraging the pros of test automation in a
successful DevOps culture.

Select the right testing tools
To leverage the benefits of test automation, you need to integrate the right testing tools for your
organization—not some “best of” testing tool.

When choosing a test automation tool, the first thing to evaluate is if your team has the required
skills and expertise to use that tool. For example, some open-source testing tools require a decent
level of programming skills to use them. Do your test engineers have this?

Then estimate the total cost of the tool, including training costs, updates, and maintenance, to see if
it is within the testing budget. Always check if decent technical support is available for the tools. If
not, are you prepared to service it yourself?

Automated testing tools should enable easy writing and execution of test cases without having to
make complex configurations. Here is a list of both open-source and commercial software testing
tools that are widely being used by many organizations.

Here are some of the most popular test automation tools:

Selenium is an open-source framework that primarily automates web application testing. It
provinces a suite of software for different testing needs. Selenium scripts can be written in
multiple programming languages.
Katalon Studio, ranked among the best automated testing software, has both free and paid
versions. It can be used for automated web, API, desktop, and mobile testing. It supports many
platforms.
JMeter is a Java-based open-source software used for performance and load testing. It can be
used to test many protocol types.
SoapUI helps you test REST, SOAP, and GraphQL APIs. It is another open-source, cross-

https://blogs.bmc.com/blogs/test-automation-frameworks/
https://blogs.bmc.com/blogs/customer-service-vs-technical-support/
https://www.selenium.dev/
https://www.katalon.com/
https://jmeter.apache.org/
https://www.soapui.org/downloads/download-readyapi-trial/


platform automation tool that has a convenient graphical user interface (GUI).

(Learn more about top continuous testing tools in the software industry.)

Track performance with metrics
Using metrics to evaluate the success or failure of testing is another best practice. This practice
enables management to get a clear picture of how the changes introduced to the software has
impacted the organization.

You can track key metrics such as:

Number of test cases passed vs failed
Number of bugs identified
Frequency of failing test cases
Execution time of the automation suite

These metrics provide insights into areas that are highly vulnerable to failures, and continuous
testing yields immediate values for them. Metrics also enable teams to foresee if the number of
bugs will increase or decrease with more changes introduced to the system over time. Then, more
innovative solutions can be applied to overcome failures.

Test execution time metrics help automation engineers to identify better ways of writing test cases
that increase performance. As the execution of automation suits has become a significant step of a
software release, test execution metrics helps to plan the release timeline effectively.

Maintain proper documentation
Maintaining proper documentation makes the testing process more organized and transparent to
everyone in the organization. Successful DevOps teams frequently create testing-related
documents, including:

Quality Management Plans (QMP)
Test summary reports
Test case specifications
Risk assessment reports
Regression test reports

These are usually created either at the beginning of the testing phase or provided as the outcome of

https://www.katalon.com/resources-center/blog/continuous-testing-tools/
https://blogs.bmc.com/blogs/it-organization-metrics/
https://blogs.bmc.com/blogs/devops-continuous-testing/
https://blogs.bmc.com/blogs/devops-continuous-testing/
https://blogs.bmc.com/blogs/regression-testing/


test results. Documents like QMPs or Test Management Plans offer a comprehensive overview of
the testing planned to carry out, covering every aspect of the features that are tested. Test summary
reports provide an in-depth understanding of the test results.

Of course, another value for documentation is that it’s great reference material for trainees. Proper
documentation helps save organization costs.

As a best practice, keep all documentation in a safe place where they are accessible and visible to
everyone in the organization. Standardize document formats and use templates to preserve the
quality—hence the value.

DevOps testing is key to high-quality software delivery
For many organization, DevOps is the ideal solution to become, or remain, more competitive in your
market. Continuous testing is an essential part of CI and CD pipelines that helps to deliver frequent,
high-quality software.

The success of testing greatly depends on the best practices you adopt in your DevOps culture.
Automation and its related tools are at the heart of DevOps testing strategies.

Related reading
BMC DevOps Blog
Quality Assurance (QA) in Software Testing: QA Views & Best Practices
Automation In DevOps: Why & How To Automate DevOps Practices
What’s Testing as a Service? TaaS Explained
SRS: Software Requirement Specifications Basics
15 Best Practices for Building a Microservices Architecture

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/quality-assurance-software-testing/
https://blogs.bmc.com/blogs/automation-in-devops/
https://blogs.bmc.com/blogs/taas-testing-as-a-service/
https://blogs.bmc.com/blogs/software-requirements-specification-how-to-write-srs-with-examples/
https://blogs.bmc.com/blogs/microservices-best-practices/

