THE ROLE OF MICROSERVIGES IN DEVOPS

Technology is evolving faster than ever. People depend heavily on the internet for all kinds of
regular tasks, from shopping to banking and healthcare. That's made it critical for service providers
to fulfill this ever-increasing consumer demand—which itself is coupled with:

* Evolving user requirements
e The increasingly challenging security landscape

This forces service providers to abandon monolith software development methods and adopt Agile
and DevOps approaches that help them quickly adapt to changing requirements.

Another trend is microservices-based architectures, where applications are built as multiple loosely
coupled services. In this article, we will discuss the role of microservices in the DevOps process.

(This article is part of our DevOps Guide. Use the right-hand menu to navigate.)

DevOps basics

DevOps is a paradigm shift in the way organizations approach software development, deployment,
and maintenance. DevOps shifts the whole software development lifecycle (SDLC) to a more
collaborative process. Unlike in traditional SDLC, where Dev, QA, and Ops teams are considered
separate individual entities, a DevOps team consists of cross-disciplined team members who bring
their unique talents to the DevOps process.

This makes the DevOps team much more flexible and helps bridge the communication gap
between larger teams such as Dev and QA. This ultimately leads to a faster, agile, and more efficient
development environment with predictable deployments and update cycles.


https://blogs.bmc.com/blogs/agile-vs-waterfall/
https://blogs.bmc.com/blogs/devops-vs-agile-whats-the-difference-and-how-are-they-related/
https://blogs.bmc.com/blogs/devops-vs-agile-whats-the-difference-and-how-are-they-related/
https://blogs.bmc.com/blogs/devops-basics-introduction/
https://blogs.bmc.com/blogs/devops-basics-introduction/
https://blogs.bmc.com/blogs/it-teams/

Additionally, DevOps enables creating SaaS business models through which organizations can gain
continuous revenue while offering an ever-improving service with stable constant updates.

DevOps offers a multitude of benefits for an organization. However, to gain those benefits you must
properly implement DevOps with standardized concepts and proper tools such as:

e Continuous integration
e Continuous delivery platforms
» Automated testing

(Learn how to set up a CL/CD pipeline.)

Integrating DevOps to software development

The core components related to development and management will remain the same. But the
technology stack you'll use in an application will change depending on your:

e Audience
e Platform
* Internal and external requirements

In this section, we will cover the core areas that need to be considered when creating a DevOps
pipeline.

Version control

Version controlling is the cornerstone of any DevOps process. Technologies like Git and code
repositories like Bitbucket, Azure Repos, and GitLab make it easier than ever to manage the source
code. These tools allow developers to work without conflicting with each other's work while
providing version-controlled changes to the application.

Even database code is how managed with version-controlled repositories as a part of the DevOps
process. We can sum up version controlling as something that:

e Reduces code conflicts
* Increases the visibility and efficiency of development
* Enables easy rollbacks to previous versions in case of any issues

Automation

The second major consideration is automation, as DevOps rely on automated tasks for faster
development. The DevOps team must try to automate any repetitive manual tasks and be constantly
on the lookout for new tasks that can be automated.

For example, automated tools like Selenium, Appium, and Cucumber can significantly benefit the
application testing stage as they allow users to automate most test cases. Furthermore, automation:

¢ Reduces human errors
e Saves time spent on mundane tasks
e Frees up team members to focus on more important matters


https://blogs.bmc.com/blogs/saas-adoption-with-subscription-services/
https://blogs.bmc.com/blogs/testing-automation/
https://blogs.bmc.com/blogs/ci-cd-pipeline-setup
https://blogs.bmc.com/blogs/devops-source-version-control/
https://blogs.bmc.com/blogs/github-vs-gitlab-vs-bitbucket/
https://www.liquibase.com/resources/guides/database-devops
https://blogs.bmc.com/blogs/automation-in-devops/

Faster, more
efficient

Immediate — Anyone can
feedback deploy

Top
Deployment

Automation

Benefits

Increased

focus on
service

offerings

High
frequency
releases

Deployment strategy

The next consideration is the deployment strategy. Most DevOps deployment stages are targeted at
highly available and scalable cloud infrastructure with the popularity of cloud-based applications
and all the advantages of cloud-based deployments.

Containerized applications are one of the factors that power this shift to cloud-based deployments.
Containers allow users to create isolated and portable application environments that can be
deployed anywhere with all the required dependencies. Platforms like Kubernetes and Rancher
provide robust orchestration capabilities for containerized deployments. Here, automation also plays
a major role by automating software packaging and deployments.

(Read our containerization introduction.)

A version-controlled and automated DevOps pipeline with a proper deployment strategy allows
organizations to create a pipeline that encompasses all the stages of SDLC. Now that we understand
the primary considerations of a DevOps pipeline, let's see how microservices affect all these factors.


https://blogs.bmc.com/blogs/high-availability/
https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/what-is-a-container-containerization-explained/

Microservices overview

Microservices is an architectural approach to development that contrast with traditional, monolithic
applications (where the entire application is considered and developed as a single entity). The
microservice architecture breaks the application into different loosely coupled services.

For instance, let's consider an online shopping platform:

* In the traditional development process, the complete platform from inventory management,
payments, and shopping cart is developed together as components of the application. For any
change, development, and deployment happen as a single entity.

* On the other hand, microservices architecture will break the application into distinct services
(inventory management service, payment service, shopping cart service), which can be
developed and deployed independently. This approach isolates any issues of that specific
service and thereby reduces their impact on the application.

Monolithic Architecture Microservices based Architecture

&)

=APPLICATION =APPLICATION
A\
Frontend - Ul UI Service
Frontend - Ul |
Backend - Application Logic T
Inventory : ¢ J'
Shopping Cart
Management Iremto P
ry . ayment
Management Shopping Cart Processing User Support
Paymelnt User Support Backend Backend Backend Backend
Processing service 01 service 02 service 03 service 04

The DevOps approach is ideal for Microservices-based applications as it allows for easy
development, provides seamless updates, and manages each service without the risk of complete
application failures.

Role of microservices in DevOps

In order to understand the role of Microservices in DevOps, let's consider a DevOps pipeline for
developing a microservices-based application.

The first thing that microservices changes is how organizations approach development. As
everything is broken down into separate services, development teams can also be divided to tackle
each service. This will, in turn, reduce the scope of the development while making the development
process more flexible.


https://blogs.bmc.com/blogs/microservices-architecture/

Overall flexibility

This flexibility allows DevOps teams to address issues effectively. For instance, when a production
bug is discovered, the development team can fix that bug in the affected service and deploy the
service without affecting the SDLC of other services and causing minimal downtime. Moreover, if
any service requires a new feature, developers can develop and deploy it in production without
affecting the development process of other services. This decoupled approach simplifies the
development and testing process while allowing services to be modified independently.

Containers

Containerization is another factor that extends and complements microservices-based architectures.
Packaging each service as a container image further reduces the complexity while streamlining the
continuous delivery pipeline.

Services can act as fully independent entities with all the dependencies and requirements bundled
within the container. This makes the services system-agnostic and reusable while allowing them to
interact with any other system.

(Learn more about containers & microservices.)

APls

APIs are another factor that goes hand in hand with microservices. With decoupled services, users
need a robust communication method to communicate between services.

APIs enable developers to expose only the relevant endpoints and information while hardening the
service and providing a universally compatible interface. This also becomes a concern when
creating reusable system-agnostic services.

(See how microservices rely on APIs.)

Automation

Next comes automation. In a microservices architecture, most testing, packaging, and deployment
tasks can be automated for each service. As each service resides in an independent DevOps
pipeline, any issues in a single automated task do not affect the other services. Plus, feedback loops
become much shorter when addressing bugs with the simplified codebase.

The stages at which microservices shine most with automation are deployment and maintenance.
An automated task will be triggered in the deployment process to deploy the service as a container
once all the testing is done and the container image has been uploaded to a container registry. This
simplifies the deployment by eliminating the need for specialized network configurations or
dependency management prior to deployments.

Increased availability, scalability

Finally, the availability and scalability of the application automatically increase with service
containers deployed in clusters and managed via an orchestration platform.

* If there is a failure in service, it can be quickly replaced with a brand new service container.


https://blogs.bmc.com/blogs/patch-hotfix-coldfix-bugfix/
https://blogs.bmc.com/blogs/containers-vs-microservices/
https://blogs.bmc.com/blogs/microservice-vs-api/
https://blogs.bmc.com/blogs/devops-feedback-loops/

* If there is a high load for a service, a new container can be created to facilitate the surge in
demand.

This allows scale-out strategies without relying on scale-up strategies based on resource increases
which are cost-prohibitive.

Microservices are perfect for DevOps

Microservices architecture is tailor-made for DevOps with its services-based approach that allows
organizations to break down the application into smaller services. This enables delivery teams to
tackle individual services as separate entities—ultimately simplifying the development, testing, and
deployment. (This doesn't mean microservices should be used for every application, however. They
do come with certain challenges.)

The role microservices plays in DevOps includes streamlining the DevOps process and increasing
productivity and quality of the application while moving developments to a flexible architecture. This
leads to the development of cloud-native applications that are capable of fulfilling any user
demand.

Related reading

e BMC DevOps Blog

e DevOps Team Structure

e Service-Oriented Architecture vs Microservices Architecture: Comparing SOA to MSA
e Software Project Management Phases & Best Practices

e Implementing GitOps To Deliver Cloud Native Applications

e Container Sprawl: What It Is & How To Avoid It



https://blogs.bmc.com/blogs/microservices-challenges-when-to-avoid/
https://blogs.bmc.com/blogs/microservices-challenges-when-to-avoid/
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/devops-team-structure/
https://blogs.bmc.com/blogs/microservices-vs-soa-whats-difference/
https://blogs.bmc.com/blogs/software-project-management/
https://blogs.bmc.com/blogs/gitops-cloud-native-app-delivery/
https://blogs.bmc.com/blogs/container-sprawl/

