CONFIGURATION MANAGEMENT IN DEVOPS

To truly grasp the DevOps concept within an organization, you should understand a handful of
essential primary disciplines. These include coding, building, testing, packaging, release,
configuration, and monitoring. Each discipline comes with its own set of best practices.

Configuration management is important in DevOps because it helps you automate otherwise tedious
tasks and allows an organization to increase agility. Moreover, configuration management supports
DevOps holistically, and it's widely agreed upon that configuration management is essential to
DevOps, as opposed to being just another component of the process.

In this article we look at configuration management, highlighting the following:

e What is configuration management?
e The three components that make-up DevOps comprehensive configuration management
e Outcomes of successful configuration management

If you're going through a DevOps transition in your enterprise business, you won't want to miss this
guide on configuration management:

(This article is part of our DevOps Guide. Use the right-hand menu to navigate.)

What is Configuration Management?

Configuration management occurs when a configuration platform is used to automate, monitor,
design and manage otherwise manual configuration processes. System-wide changes take place
across servers and networks, storage, applications, and other managed systems.



https://blogs.bmc.com/blogs/devops-basics-introduction/
https://puppet.com/resources/whitepaper/get-started-devops-guide-it-managers

An important function of configuration management is defining the state of each system. By
orchestrating these processes with a platform, organizations can ensure consistency across
integrated systems and increase efficiency. The result is that businesses can scale more readily
without hiring additional IT management staff. Companies that otherwise wouldn't have the
resources can grow by deploying a DevOps approach.

Configuration management is closely associated with change management, and as a result, the two
terms are sometimes confused. Configuration management is most readily described as the
automation, management, and maintenance of configurations at each state, while change
management is the process by which configurations are redefined and changed to meet the
conditions of new needs and dynamic circumstances.

A number of tools are available for those seeking to implement configuration management in their
organizations. Puppet has carried the torch in pioneering configuration management, but other
companies like Chef and Red Hat also offer intriguing suites of products to enhance configuration
management processes. Proper configuration management is at the core of continuous testing and
delivery, two key benefits of DevOps.

Components: Configuration Management in DevOps

Based on what we've discussed, you may have already gleaned that configuration management
takes on the primary responsibility for three broad categories required for DevOps transformation:
identification, control, and audit processes.

Identification:
The process of finding and cataloging system-wide configuration needs.

Control:

During configuration control, we see the importance of change management at work. It's highly
likely that configuration needs will change over time, and configuration control allows this to happen
in a controlled way as to not destabilize integrations and existing infrastructure.

Audit:
Like most audit processes, a configuration audit is a review of the existing systems to ensure that it
stands up to compliance regulation and validations.

Like DevOps, configuration management is spread across both operational and development
buckets within an organization. This is by design. There are primary components that go into the
comprehensive configuration management required for DevOps:

* Artifact repository
e Source code repository
e Configuration management data architecture

Artifact Repository

An artifact repository is meant to store machine files. This can include binaries, test data, and
libraries. Effectively, it's a database for files that people don't generally use. In DevOps, artifacts, like
binaries, are a natural result of continuous integration. DevOps developers are always pushing out
builds which, in turn, create artifact files that need to be stored, but not necessarily accessed.



Source Code Repository

Conversely, the source code repository is a database of source code which developers use. This
database serves as a container for all the working code. Source code aside, it stores a number of
useful components including various scripts and configuration files.

While some developers store binaries in this same repository, that's not a best practice. In DevOps,
due to the sheer number of builds and off-shoot binaries, it's recommended that an artifact
repository is developed for the purpose of storing binaries and other artifacts.

It's not hard to determine what goes into the source code repository. A quick litmus test is to ask
yourself, “are the files human-readable?”

If yes, there's a good chance they belong in the source code repository as opposed to anywhere
else. There are two types of source code repositories: centralized version control system (CVCS) and
distributed version control system (DVCS).

In a CVCS, the source code lives in a centralized place, where it can be retrieved and stored.
However, in DVCS, the code exists across multiple terminals useful in the development process. It's
faster and more reliable. Most often, DVCS is the chosen source code repository of today's DevOps
professionals.

Configuration Management Data Architecture

The idea of having data architecture dedicated to configuration management is a principle of ITIL
service management framework. A configuration management database or (CMDB) is a relational
database that spans across multiple systems and applications related to configuration management,
including services, servers, applications, and databases to name a few.

CMDB is helpful for change management, as it allows users to audit the relationships between
integrated systems before configuration changes are made. It's also a useful tool for provisioning as
you can glean all identifying information for objects like servers. A CMBD is an essential tool when it
comes to incident management, too, as it helps teams escalate issues to resolution.

Outcomes of Properly Managed Configurations

When a system is properly configured and managed, you can expect certain outcomes. Among
these outcomes are delivering infrastructure-as-a-code and configuration-as-a-code. Below, we will
look at the role each outcome has in configuration management:

Infrastructure-as-a-Code

Infrastructure-as-a-code (laaC) in simplest terms is a code or script the automates the environment
necessary for development, without manually completing all the steps necessary to build the
environment. When we use the word ‘environment'’ in this way, we are referring to the set up of all
computing resources required to create the infrastructure to perform DevOps actions. This could be
servers, networks of configurations and other resources.



https://blogs.bmc.com/blogs/infrastructure-as-code/

Configuration-as-a-Code

As the name suggests, configuration-as-a-code (CaaC) is a string of code or script that standardizes
configurations within a given resource, like a server or network. These configurations are applied
during the deployment phase to ensure the configuration of the infrastructure makes sense for the
application.

Benefits of laaC and CaaC

Fans of continuous integration should be pretty familiar with the benefits of laaC and CaaC, but for
those new to DevOps, you'll want to know what to expect. These are some of the benefits of the two
key outcomes defined in this section:

* Automation of the infrastructure environment provides standardization
e Setups are free of human error

Collaboration is enhanced between operations and development
Keeps configurations from drifting

Makes infrastructure more flexible, ready to scale

Each step is consistent across all resources

* Version control is a given

With these benefits applied to an organization, efficiency and greater agility are a natural result.
DevOps is practically synonymous with configuration management, laaC, and CaacC.

Configuration Management is DevOps

Seeing configuration management as separate and aside from DevOps creates a faulty perspective.
Comprehensive configuration management, as described in this article, is essential to a properly
functioning DevOps organization, as it lays the groundwork for far more automation than that which
it impacts directly. With the inclusion of laaC and CaaC in the development environment, enterprise
businesses communicate better and function as a more agile development unit focused on
continuous integration and continuous delivery.

The right tools are essential for configuration management. There are a number of heavy hitters
throwing their hats in the ring to help your organization with configuration management. BMC is your
essential resource for DevOps education and consultation, and we can help you integrate the right
elements into your DevOps infrastructure.

When it comes to configuration management, BMC is a trusted partner. For more information on
solutions that could elevate your enterprise organization, contact us today.



https://blogs.bmc.com/forms/contact-bmc.html

