DEVOPS METRICS FOR OPTIMIZING C1/CD PIPELINES

DevOps organizations monitor their CI/CD pipeline across three groups of metrics:

e Automation performance
e Speed
e Quality

With continuous delivery of high-quality software releases, organizations are able to respond to

changing market needs faster than their competition and maintain improved end-user experiences.
How can you achieve this goal?

Let's discuss some of the critical aspects of a healthy CI/CD pipeline and highlight the key metrics
that must be monitored and improved to optimize CI/CD performance.

(This article is part of our DevOps Guide. Use the right-hand menu to go deeper into individual practices
and concepts.)


https://blogs.bmc.com/blogs/devops-basics-introduction/

= bmce

Continuous Integration and Continuous Delivery (CI/CD) Pipeline

Cl cD
A A
r ar 1
“r-‘"r l.-.l
. J
T

Continuous Monitoring

CI/CD brief recap
But first, what is CI/CD and why is it important?

Continuous Integration (Cl) refers to the process of merging software builds on a continuous basis.
The development teams divide the large-scale project into small coding tasks and deliver the code
updates iteratively, on an ongoing basis. The builds are pushed to a centralized repository where
further automation, QA, and analysis takes place.

Continuous Delivery (CD) takes the continuously integrated software builds and extends the
process with automated release. All approved code changes and software builds are automatically
released to production where the test results are further evaluated and the software is available for
deployment in the real world.

Deployment often requires DevOps teams to follow a manual governance process. However, an
automation solution may also be used to continuously approve software builds at the end of the
software development (SDLC) pipeline, making it a Continuous Deployment process.

(Read more about Cl/CD or set up vour own ClL/CD pipeline.)

Metrics for optimizing the DevOps CI/CD pipeline

Now, let's turn to actual metrics that can help you determine how mature your DevOps pipeline is.
We'll look at three areas.

Agile CI/CD Pipeline

In regard to delivering high quality software, infusing performance and security into the code from
the ground up, developers should be able to write code that is QA-ready.

DevOps organizations should introduce test procedures early during the SDLC lifecycle—a practice
known as shifting left—and developers should respond with quality improvements well before the
build reaches production environments.

DevOps organizations can measure and optimize the performance of their CI/CD pipeline by using
the following key metrics:


https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/what-is-ci-cd/
https://blogs.bmc.com/blogs/ci-cd-pipeline-setup/
https://www.bmc.com/blogs/what-is-shift-left-shift-left-testing-explained/

Test pass rate. The ratio between passed test cases with the total number of test cases.
Number of bugs. The number of issues that cause performance issues at a later stage.
Defect escape rate. The number of issues identified in the production stage compared to the
number of issues identified in pre-production.

Number of code branches. Number of feature components introduced into the development
project.

Automation of CI/CD & QA

Automation is the heart of DevOps and a critical component of a healthy CI/CD pipeline. However,
DevOps is not solely about automation. In fact, DevOps thrives on automation adopted
strategically—to replace repetitive and predictable tasks by automation solutions and scripts.

Considering the lack of skilled workforce and the scale of development tasks in a CI/CD pipeline,
DevOps organizations should maximize the scope of their automation capabilities while also closely
evaluating automation performance. They can do so by monitoring the following automation
metrics:

* Deployment frequency. Measure the throughput of your DevOps pipeline. How frequently can
your organization deploy by automating the QA and CI/CD processes?

* Deployment size. Does automation help improve your code deployment capacity?

» Deployment success. Do frequent deployments cause downtime and outages, or other
performance and security issues?

Infrastructure Dependability

DevOps organizations are expected to improve performance without disrupting the business.
Considering the increased dependence on automation technologies and a cultural change focused
on rapid and continuous delivery cycles, DevOps organizations need consistency of performance
across the SDLC pipeline.

Dependability of infrastructure underlying high performance CI/CD pipeline responsible for
hundreds (at times, thousands) of delivery cycles on a daily basis is therefore critical to the success
of DevOps. How do you measure the dependability of your IT infrastructure?

Here are a few metrics to get you started:

e« MTTF, MTTR, MTTD: Mean Time to Failure/Repair/Diagnose. These metrics quantify the risk
associated with potential failures and the time it takes to recover to optimal performance.
Learn more about reliability calculations and metrics for infrastructure or service performance.

» Time to value. Another key metric is the speed of Continuous Delivery cycle release
performance. It refers to the time taken before a complete written software build is released
into production. The delaying duration may be caused by a number of factors, including
infrastructure resources and automation capabilities available to test and process the build, as
well as the governance process hecessary for final release.

* Infrastructure utilization. Evaluate the performance of every service node, server, hardware,
and virtualized IT components. This information not only describes the computational
performance available for ClI/CD teams but also creates vast volumes of data that can be
studied for security and performance issues facing the network infrastructure.



https://blogs.bmc.com/blogs/patch-hotfix-coldfix-bugfix/
https://blogs.bmc.com/blogs/automation-in-devops/
https://blogs.bmc.com/blogs/mtbf-vs-mtff-vs-mttr-whats-difference/
https://blogs.bmc.com/blogs/system-reliability-availability-calculations/
https://blogs.bmc.com/blogs/it-virtualization/
https://www.bmc.com/blogs/enterprise-networking/

With these metrics reliably in place, you'll be ready to understand how close to optimal you really
are.

Related reading

e BMC DevOps Blog

* Deployment Pipelines (CI/CD) in Software Engineering
e Continuous Delivery Metrics

e SRE vs DevOps: What's The Difference?

e DevOps Team Structure

e Choosing IT Metrics That Matter



https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/deployment-pipeline/
https://blogs.bmc.com/blogs/continuous-delivery-metrics/
https://blogs.bmc.com/blogs/sre-vs-devops/
https://blogs.bmc.com/blogs/devops-team-structure/
https://blogs.bmc.com/blogs/it-metrics/

