
CONFIGURING DB2 FOR Z/OS BUFFER POOLS

Guest post by Lynn Gros, Lead Quality Assurance Representative

Second in a series of posts.

Last week, we reviewed some buffer pool basics. This week, we'll discuss how to configure buffer
pools for optimal performance.

Most Db2 users revisit buffer pool sizing and thresholds over time to make sure they meet
performance goals. The IBM Db2 on z/OS Installation Guide provides information on initial sizing for
Db2 buffer pools, and it is often the best place to start for new applications or subsystems. Once
applications are in test or production, you can collect metrics that may lead you to consider changes
to the buffer pool configuration.
General considerations
Use the simplest approach that effectively meets performance requirements. Your major task is
determining Db2 object placement in the various pools. This effort will lead to the physical
characteristics of the buffer pool configuration for your Db2 subsystem.

A good starting point is to consider the various Db2 object types you deal with on a day-to-day
basis, including:

System – Db2 catalog and directory objects (DSNDB01 and DSNDB06)
Work – Storage used for temporary files and tables required for a multiple Db2 functions,
including global temporary tables, Db2 sort work files, and other functions. Because these
pagesets tend have high I/O volumes, consider page fixing for these pools. Db2 9 merges the



WORKFILE and TEMP databases from Db2 V8 into a single WORKFILE database. Work file
enhancements in Db2 10 reduce the CPU time for workloads that execute queries that require
the use of small work files, and improve scalability.  Db2 10 supports partition-by-growth table
spaces in the WORKFILE database, and it provides more opportunity to use in-memory work
files than Db2 9.
Large objects – LOB/XML structures.

LOBs should not share a buffer pool with other kinds of data. Set the DWQT (deferred write
threshold) to 0 for these objects. This allows updates to happen continuously (trickle writes) in
the background to avoid massive writes at Db2 checkpoints.
XML table spaces use uses 16K buffer pools. Place these objects in dedicated pools. Use a
buffer pool other than BP16K0.
Application table spaces and index spaces

Place WORKFILE and TEMP database objects in dedicated buffer pools. Typically, workfile pagesets
are accessed sequentially and are short-lived objects. Db2 9 will try to make greater use of 32K
workfile table spaces, so increase the size of the 32K buffer pool used for the WORKFILE database
and increase the number of 32K page workfile data sets.

It is important to understand Db2 application object characteristics when deciding on buffer pool
placement. Grouping objects with similar characteristics into the same buffer pool can be a good
approach to meet your performance objectives. Consider these characteristics:

Business priority – Perhaps the most important information you need is how critical the
application is to your business. Consider placing critical application objects that require
maximum performance into dedicated buffer pools to avoid resource contention with less-
important application objects.
Random or sequential access – Is the predominant level of GETPAGE activity random or
sequential? Place objects that are accessed sequentially most often in a pool with a higher
VPSEQT value; place objects with mostly random access in a pool with a lower VPSEQT value.
If the accesses are split evenly between random and sequential, use the default values as a
starting point;
Activity against this object – How busy is this object? Activity is measured in GETPAGEs per
second against the object. A very busy object might cause buffer pool pages to be stolen from
another object that is not as busy but more important to the business.
Update frequency – What is the update rate for the object? Is this a heavily updated Db2 page
set? In general, table spaces and index spaces that are frequently updated should be
separated from infrequently updated objects to allow optimum buffer pool sizing and
thresholds.
Object size – How big is this Db2 object in pages? If the object is very large and the access is
very random, the chances of reusing a page that’s already in the pool will be minimal, so
having a very large pool for the very large object may provide no benefit to application
performance.

It can be difficult to collect many of these characteristics, especially for a new application. Use an
educated guess as a starting point. In test environments, use an isolated set of buffer pools as you
begin testing a new application or one that is undergoing major changes. This will give you more
complete control of the testing environment where you can monitor buffer pool performance more
easily.



Db2 application objects are a much more complex consideration, but here are some general
guidelines:

Don’t place application objects in BP0, BP8K0, BP16K0 or BP32K. Db2 catalog and directory
objects are placed these pools. Set default buffer pools by modifying these values on the
DSNTIP1 installation panel. It’s a good idea to specify an explicit buffer pool assignment for
your objects; however, if you are allowing implicit object creation, you can’t directly specify
what pools to use. Changing the installation defaults for user data and indexes will help
enforce your strategy for object placement.
Assign indexes to different buffer pools than table spaces for concurrency and long residency
times. Indexes are typically accessed differently from the tables they index - and with greater
frequency. The number of buffers required for average working set size of an index space is
usually smaller than its corresponding table space/tables, and you want to ensure buffer
pages used by index pages remain resident and not get flushed during heavy table space scan
activity. Like table spaces, separate frequently updated indexes from infrequently updated
indexes to allow optimum buffer pool sizing and thresholds.

Next week, we'll look at metrics.

The postings in this blog are my own and don't necessarily represent BMC's opinion or
position.


