CONFIGURING APACHE CASSANDRA DATA CONSISTENCY

Let's look at how Apache Cassandra handles data consistency.

If you write data to n - 1 nodes in a cluster and then an application reads it from node n Cassandra
could report that the data is not there as replication is not instant. That could be a big problem or not
a problem at all. It depends on the application. If it's a revenue generating application then it's a
problem.

So, Cassandra lets administrators configure data replication and consistency at the application level.
The trade off is response time versus data accuracy.

This ability to configure this at the application level is called eventual consistency. As the name
implies you can tell Cassandra to wait after an operation to write all data to all data centers and
racks or move to the next operation after the first write is done with the understanding that
Cassandra will eventually catch up.

This idea is the same as determining what kind of storage to rent or buy when designing an
application. Applications that are deemed less mission critical might use lower cost storage and
even fewer drives and make fewer replicas or no replicas at all than mission critical ones.

Consistency can be set at these levels:

 data center
e cluster
* |/0 operation type (i.e, read or write)

(This article is part of our Cassandra Guide. Use the right-hand menu to navigate.)

https://blogs.bmc.com/blogs/apache-cassandra-introduction/

Write and Read Consistency

Write consistency has lots of different options. Here are a couple.

Data must be written to the memtable and commit log on each node. The steps
that Cassandra goes through as it writes data is to:
- write data to the memtable (memory)

ALL - write to the commit log
- write to disk
- compact the data
A quorum at the data center level. A quorum is ((number of replicas)) / 2 +1
QUORUM rounded up. Adding 1 makes this number the next integer when that division
results in a fraction. And you cannot write to a fraction of a data center, so add one
more
ONE, TWO, . :
THREE 1, 2, or 3 replicate, meaning at the node level.

Read Consistency

Depending on the write consistency set, some nodes will have older copies of data than others. So it
makes sense that you can configure the read consistency as well.

ALL Waits until all replicas have responded.

etc.

Replication Strategy
Replication is a factor in data consistency. A replica means a copy of the data.

in order to whether a write has been successful, and whether replication is working, Cassandra has
an object called a snitch, which determines which datacenter and rack nodes belong to and the
network topology.

There are two replication stations:

1. SimpleStrategy—one datacenter and one rack.
2. NetworkTopologyStrategy—multiple racks and multiple data centers. This is preferred even
when there is only one data center.

Example
Here we illustrate with an example.

First follow these instructions to set up a cluster.

Use nodetool to determine the name of the data center as reported by the snitch. Here the name is
datacenter1. This shows that there are two nodes in this cluster. Of courses you would run this on
each node to see what data center each node belongs to.

nodetool status

https://blogs.bmc.com/blogs/setup-cassandra-cluster/

Datacenter: datacenterl

Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns Host ID

Rack

UN 172.31.46.15 532.22 MiB 256 ? 58999e76-
cf3e-4791-8072-9257d334d945 rackl

UN 172.31.47.43 532.59 MiB 256 ? 472fd4f0-9bb3-48a3-

a933-9c9b07f7a9f6 rackl

Create a keyspace with NetworkTopologyStrategy with 1 replica to datacentera. So that means
write the data to two racks, since there is only one data center.

CREATE KEYSPACE Customers
WITH REPLICATION = { 'class' : 'NetworkTopologyStrategy',
'datacenterl' : 1}%};

Now create a table

CREATE TABLE Customers.Customers (
Name text PRIMARY KEY,

credit int

);

Put some data in it;

insert into Customers.Customers (name, credit) values ('Hardware Store',
1000) ;

Turn tracing on.

cqlsh> TRACING on;
Now Tracing is enabled

And write another record:
insert into Customers.Customers (name, credit) values ('Book Store', 1000);
Cassandra responds with some information on latency. It does not show rack level operations.

Tracing session: bf8e0a90-0c43-11e9-9628-9d6a9%90b241c5

Parsing insert into Customers.Customers (name, credit) values ('Book Store',
1000);

activity| timestamp | source | source elapsed | client
| 2018-12-30 15:01:12.761000 | 172.31.46.15 | 203 | 127.0.0.1

Preparing statement | 2018-12-30 15:01:12.762000 | 172.31.46.15 | 359 |

127.0.0.1

Determining replicas for mutation | 2018-12-30 15:01:12.762000 |
172.31.46.15 | 662 | 127.0.0.1

Appending to commitlog | 2018-12-30 15:01:12.762000 | 172.31.46.15 | 753 |
127.0.0.1

Adding to customers memtable | 2018-12-30 15:01:12.762000 | 172.31.46.15 |
827 | 127.0.0.1

Request complete | 2018-12-30 15:01:12.762121 | 172.31.46.15 | 1121 |
127.0.0.1

