
CHOOSING YOUR COBOL MIGRATION PATH: LEADING WITH
VERSION 5.2 OR 6.1

Deciding which COBOL release you want to migrate to first and then following through with a stable
migration requires a well-researched and carefully considered plan. Here we present the similarities
and differences between the two latest versions of COBOL.

Converting COBOL programs to Java can create a multitude of problems, including performance
issues. Migrating to a newer version of COBOL can yield desired reductions in CPU costs without the
headaches caused by migration to Java. In this post we’ll discuss the difference between COBOL
Version 5.2 and 6.1 to help you determine which release you should migrate to first.

To start, let’s look at some fundamental differences between COBOL Version 5.2 and 6.1. Per IBM’s
announcement of COBOL Version 5.2, the upgrade included new and improved features such as:

Support for the new IBM z13 hardware
New, restored and enhanced compiler options for ease of migration and programmer
productivity
New features added from the ISO 2002 COBOL Standard
New IBM extensions to COBOL
Product-related enhancements

However, more improvements and features were added in the release of COBOL Version 6.1,
including:

Increased compiler capacity
This provides a new “back end” that converts the intermediate form of a program to machine

http://www-01.ibm.com/support/docview.wss?uid=swg21691855&aid=1
http://www-01.ibm.com/support/docview.wss?uid=swg21974752&aid=1


code. It resolves problems in previous COBOL versions that failed to compile very large
COBOL programs. Large programs are typically those that used “code generators.” These code
generators spew out a lot of code and use a lot of CPU and memory resources. The IBM “back
end” for COBOL Version 6.1 uses 64-bit storage to overcome this problem. You may use more
CPU to compile a program with 6.1 than with 4.2, but if you run the program several times a
day, you will end up using far less CPU during run-time.

New COBOL language features
More new language features were added from the ISO 2002 COBOL Standard, introducing the
use of ALLOCATE, FREE and INITIALIZE statements.

New and enhanced compiler options
These new options ease migration and improve programmer productivity, but to implement
some of them, you may have to consider how they’re to be used and when to use them
properly. For example:

VSAMOPENFS allows compatibility with "file status 97" in pre-COBOL Version 6 programs
SUPPRESS/NOSUPPRESS allow debuggers to use the copybook information in the listing
SSRANGE sub option enhances range checking for subscripts, reference modifications
group ranges and indexes at run time
Diagnostic message for ZONECHECK(MSG) compiler option assists the detection of
invalid zoned decimal data items
LVLOPTION was replaced by a seven-character build level identifier in the format
PYYMMDD to the compiler listing header

Runtime and product-related enhancements
For RENT compiled programs, WORKING-STORAGE will be acquired from HEAP storage and
will be initialized at the COBOL program call and not when the program object was loaded.
This can help applications by:

Freeing storage below the 16MB line and using storage in the HEAP
Reducing storage usage and performance tuning in Table SORT
Improving performance for INSPECT, UNSTRING, SEARCH ALL (exploiting z13 features
such as SIMD)

Which Version Is Better?
To reiterate the final thought from our last post, migration to both COBOL Version 5.2 and 6.1 is a
smart idea. It’s true that starting at COBOL Version 6.1 eliminates duplicate compiler upgrades twice,
once to 5.2 and again to 6.1. However, by migrating to COBOL Version 5.2 first, you can save costs by
leveraging the IBM Enterprise COBOL trials for both 5.2 and 6.1 to gain maximum experience and
application comfort before making a formal decision to upgrade. There will not be any Single
Version Charging (SVC) changes during these trial periods. Consult the IBM announcement letter
Enterprise COBOL Developer Trial for z/OS, V6.1 for more details.

Keep in mind COBOL Version 5 can be ordered until September 2017, so you have a limited time to
take advantage of the benefits from migrating to this version. Also, consider that COBOL Version 5.1
doesn’t support the z13 and 5.2 is the recommended first choice for the first migration phase

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&supplier=897&letternum=ENUS216-060


because it provides XML compatibility with the Enterprise COBOL Version 3 parser.

Be sure to use ZONECHECK and ZONEDATA to identify “improperly formatted data fields.” It has
been said that many migration problems are data related. Data that was accepted as valid (or not
detected as invalid) by Enterprise COBOL Version 4.2 and earlier could now be invalid with COBOL
Version 5.2 and 6.1.

And, of course, spend some time reading through the migration guides for each version to get a
better sense of where you’re going:

Enterprise COBOL V6.1 for z/OS Migration Guide
How to take advantage of the new Enterprise COBOL V5/V6 compilers - Migration!
Migration recommendations to Enterprise COBOL V5 and V6

Performing a Migration
The following steps and, admittedly very technical, information should help guide you on your
migration journey.

Prepare to Migrate1.
To prepare for a migration to the latest version of COBOL, consider whether you have
programs that were last compiled under OS/VS COBOL, or COBOL V2. You need to
upgrade the code to Enterprise COBOL 4.2 before migrating to anything higher. Add
FLAGMIG4 and FLAG(I,I) to identify necessary coding changes. Next, determine what
programs you want to upgrade. Focus on applications that consume CPU resources as
candidates to convert first. Note that migration to PDSEs is required. Try to do that when
you are at Enterprise COBOL V4.2. Also, note there will be more work datasets required
during compile time.

 

Brace for Compile Time “Shocks”1.
There are a few “shocks” to brace for. Compile time CPU usage will rise five to 15 times its
current volume, depending on the optimization level. Meanwhile, compile time memory
usage will rise upwards of 20 times its current level. IBM requires the region size of the
compile step to be a minimum of 200MB. Many shops are having to utilize a default size
of 500MB or 0M because of the amount of storage required for optimization.

 

Find Invalid COBOL Data1.
Invalid COBOL data must be found using repetitive testing during the migration process.
This data generally cannot be found using a compiler feature or option, but
programmatically can be found using COBOL statements such as IF NUMERIC. You can
use compiler options such as SSRANGE to flush out the problems during testing.

 

Stay Up to Date1.
Keep the service updates for the compiler and LE up to date. Several PTFs are resolved
nearly every month. Refer to the IBM COBOL Fix list web page for this information.

http://publibfp.boulder.ibm.com/epubs/pdf/igy6mg10.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg27039560&aid=1
http://www.ibm.com/support/knowledgecenter/en/SS6SG3_6.1.0/com.ibm.cobol61.ent.doc/migrate/igymch1600rec.html
http://www-01.ibm.com/support/docview.wss?uid=swg27041164


 

Learn and Watch for Pitfalls1.
As usual, there are a few pitfalls to watch for. It’s important to learn from what others have
gone through. Refer to literature and bug lists on the above-mentioned fix list web page.
Also, make sure you repetitively resolve problems in each of your applications. It will get
easier for later migrations as you build a comprehensive list of common errors in your
codebase.

 

Understand the Impact of New Compile Options1.
When compiling, adding new compile time options will help quantify the impact. IBM
recommends compiling with SSRANGE, ZONECHECK and OPT(0) to flush out all table misuse
and invalid data, and recompiling with NOSSRANGE, NOZONECHECK and OPT(2) for QA and
production.

SSRANGE can average as much as 18 percent more CPU.
ZONECHECK will add an IF NUMERIC before any numeric statements, which also will
increase the CPU time of the run.

SSRANGE, ZONECHECKS and other options will definitely speed up the ability to
clean up bad zone bits.
Compile with NUMPROC(PFD), which is more efficient.

ZONEDATA will confirm the zoned part of decimal data is valid and provide compatibility
with prior COBOL Version 6.1 compiler behavior.
RULES will cause the compiler to issue warning messages when detecting non-standard
or poor coding practices that were tolerated prior to COBOL Version 6.1. Systems
personnel can change the warning to an error to force changes.

Deciding which COBOL release you want to migrate to first and then following through with a stable
migration requires a well-researched and carefully considered plan. As you begin migrating your
COBOL applications, testing and properly debugging early in the process are also vital to avoiding
future problems.


