
WHAT IS THE CANARY DEPLOYMENT & RELEASE PROCESS?

Canary release of software is a deployment method that combines characteristics of other
deployment options, creating an ideal modern strategy. It uses a step-by-step rollout process with
effective monitoring and rollback options to minimize the risks associated with introducing new
software.

The name comes from the use of canary birds in coal mines in the past. They would usually fill the
tunnels with soft bird songs, but ultimately had a more sinister purpose as toxic-gas detectors.
Because canaries are more sensitive to gas than humans, they would fall ill or die at low exposure
levels, signaling to the miners to evacuate before it was too late.

Today, the figurative “canaries” in canary deployment are small subsets of users who are exposed to
new updates before others. They typically have a small window of time to test the rollout and
determine if the software is ready for deployment to more or all users. Fortunately, the only
consequences they might suffer are inconvenient user experiences from latent bugs, unlike the
canaries of the coal mines in days past.

Comparison With Other Deployment Types
Software deployment methods over time have changed significantly due to various factors. Modern
challenges in the field include the growing ubiquity of cloud-based and distributed applications,
increasingly frequent deployments, microservice architectures, and layering of multiple
development teams.



With so many factors to take into consideration, there’s a lot that can go wrong at any time. Canary
release helps address some of the problems in such modern architectures by cutting the process
into small monitored steps. Below are two common alternative types of deployment from which
canary release combines some features, providing the best of two worlds.

A/B or Blue-Green
This method is quite similar but not identical to canary deployment. It’s common for people to mix
up A/B testing and canary deployment, so be sure to stay aware of their differences while still
appreciating how they can complement each other.

In this method, two identical production environments called Blue and Green (or A and B) run in
parallel. At any given time, only one of them is live and serving all traffic while the other is idle. As
the software reaches the final stages of preparation, it goes through testing in the idle environment.
Once the final testing there completes, all traffic will change routes to the new software.

Rolling/Phased/Step
A rolling release staggers software deployment over multiple phases, replacing an old application
with a new one in steps over time. The new and old versions temporarily coexist with the updated
software added to one server (or a subset of servers) at a time, rather than an entire duplicate
environment as in blue-green deployment.

Canary: The Best of Both Worlds
Canary deployment combines the two above methods into one that is even more risk-averse. It
involves first deploying a new code application in part of the production infrastructure for testing, as
in blue-green deployment. But rather than having a fully cloned environment, this testing
environment is just a small portion of the total infrastructure.

Once the update receives approval for release, canary deployment makes use of the phased
approach of rolling deployment to expose a subset of users to the new software. The number of
users routed to the new application then increases over time as the software receives confirmation
of functionality. In this manner, the new and old versions exist simultaneously for a little while, but
the new version progressively replaces the older one.

Infrastructure and Requirements
The primary infrastructure requirement for canary deployment is a partition. Most canaries partition
the user base, but an alternative is to partition based on instances. If opting for partitions by instance,
you can configure a subset of the available instances to use the new software. However, it is best to
partition by user because they are the final destination of the software. It is also typically easier to do
so as there are several ways in which to separate users.

A user partition can group the users by simple factors such as geographical region, location, or time
zone. It could also be a more randomized selection of a certain percentage of the overall user pool.
For a more narrow focus, partitioning based on certain membership types or external vs. internal
divisions can center the software test on specific groups.

Overall, aim to partition in such a way that the group of users has a high level of trust and/or the loss



of their trust will not have a high impact on the organization overall. Certain tooling can make it
easier to manage various user partitions and can also save some development time.

Beyond infrastructure, you’ll also need to be sure to have adequate tracking capabilities. Monitoring
the positive and negative impact on users and applications is vital for successful canary deployment.
Proper analytics such as latency, volume, error count, and memory usage take the monitored data
and turn it into useful information about the release. There are some open-source options as well as
paid commercial products available to help you incorporate high-quality analytics and monitoring
according to your company’s needs.

Canary Applications
The applicability of canary deployment varies in different circumstances. Some situations in which
you want to avoid using it are when safety, critical system, or valuable assets are on the line. For
example, critical systems running something like a nuclear power plant cannot tolerate even the
smallest failure, thus requiring something more concrete than a canary release. Software that
manipulates large or frequent financial transactions would also require extra care.

Situations in which canary is optimal are those where other forms of testing are difficult or those
which require mitigation of risk. If a service depends on upstream systems that cannot receive
proper testing, then canary deployment can help successfully integrate it. Additionally, if an
application consists of multiple services with independent change rates, canary deployment
provides a means of verifying functionality in a realistic environment. The small percentage of traffic
directed to the environment via partitioning also mitigates high operational risk.

Challenges of Canary Deployment
While canary deployment provides many benefits, it still comes with some drawbacks to consider:

Added complexity
Difficulty in smooth rollout if the software is installed on the users’ devices
Manual release can take time and result in errors
Requires high visibility of the user behavior, system, and application
Challenging to manage database schema changes and API versions

Most of these challenges depend on the capabilities of the given organization as well as the type of
software update itself. In general, you will need to be prepared to manage additional code, services,
and components during the time of the canary release. For example, multiple versions of the
software will need to run at the same time, but the brief time of overlap means that this is a short-
lived problem. Try to keep the number of versions to a minimum to reduce complications.

The type of application may have a larger effect, as canary deployment is more difficult when it
comes to software installed on user devices. It is still possible, but the rollout may be less smooth
because the development team will have less control.

To ease the process of canary release in all cases, the development team should employ
automation. Automating the deployment speeds up the process and reduces errors that often come
from manual methods.

Other requirements for ease-of-use include maintaining high visibility of the system and its users



through tight monitoring, analytics, and strategy implementation. These capabilities will also make it
easier for the development team to manage incompatibilities.

Benefits of Canary Deployment
Releasing software through canary deployment supports modern infrastructures in several ways:

Phased rollout of new applications reduces user exposure to negative operational issues
Eases rollback implementation in case of problems
Reduces deployment cycle length, allowing deployment to production earlier and more often
Increases customer trust by monitoring and reducing potential software problems while
simultaneously supporting innovation and improvement of systems

Although some users will inevitably still experience issues, the phased rollout of canary deployment
keeps the number as low as possible. And when problems occur, the ease of rollback allows rapid
recovery that minimizes the overall negative experience for any given user.

Each canary deployment should optimally only take minutes or hours to complete, making it highly
efficient for fast and frequent updates. The resulting shorter deployment cycles benefit
organizations by reducing time to market and giving customers more product value in reduced time.
It also allows customer feedback to reach the production team more rapidly, leading to a quicker
response to problems.

The combination of minimized user exposure, fast recovery, and frequent deployment combine to
make happy customers. They end up having access to constantly improving software systems with
only minimal and short-lived negative experiences along the way. Additionally, the morale of the
developer team goes up due to ease of deployment and recovery, making it a win-win for all parties.


