
CALLBACK HELL

Callback Hell, also known as Pyramid of Doom, is an anti-pattern seen in code of asynchronous
programming.

It is a slang term used to describe and unwieldy number of
nested "if" statements or functions.

If you are not expecting your application logic to get too complex, a few callbacks seem harmless.
But once your project requirements start to swell, you will quickly find yourself piling layers of
nested callbacks. Congrats! Welcome to Callback Hell.

Callback Hell Node Js – JavaScript Callback
A Callback is a function “A” that is passed to another function “B” as a parameter. The function “B”
executes the code “A” at some point. The invocation of “A” can be immediate, as in a synchronous
callback, or, it can occur later as in an asynchronous callback. It’s actually a simple concept that will
be well understood with an example:

In the code we can see how to
make a call to readFile and we pass it as a second parameter function (Callback Hell). In this
case, readFile is an asynchronous operation and when it’s done with the operation of reading the
file, it will execute the callback by passing the results of the operation to parameters.

The use of callbacks makes the code difficult to write and maintain. It also increases the difficulty of
identifying the flow of the application, which is an obstacle when it comes to making debug, hence
the famous name to this problem: Callback Hell.

Q: What's worse than callback hell?

A: Not fixing it.

So it is definitely recommended to do it right from the get-go and avoid deeply-nested callbacks.
My favourite solution for this will be the usage of the Promise object. I have been dealing with
Node.js for my last few projects and Promise managed to keep my sanity in check. But if you are
looking for something more edgy, you will love Generators. Another elegant approach to get rid call
back hell, is to use async.waterfall. I will touch more in depth about all the approaches below.

JavaScript promises hell
A promise is the future result of an asynchronous operation and is represented as a JavaScript
object with a public interface. If we apply the code above, we would be left with the following code:

While it is true that by using
promises the code is more readable, we still end up having a problem; we have an application that is
difficult to debug and maintain. Again, it is very easy to lose track of what is happening in the
application, since we are talking about “future” results. Therefore, we will first have to convert all
these APIs based on callbacks to Promises. That is when the coroutines (Fibers) are quite helpful.

Generators
Generators, like Promise, is also one of the features in ES6 that can manage asynchronous
programming. The great thing about Generators is that it can work hand-in-hand with Promise to
bring us closer to synchronous programming.

Pro-tip: If you

https://colintoh.com/blog/staying-sane-with-asynchronous-programming-promises-and-generators#generators

cannot see how this might look synchronous, strip away the function *() and yield.
From the above example, we are coding in a synchronous manner with Generators- using the try
and catch block and writing the code as if the result is returned immediately. There are also no
verbosity with the then handler.

Run-to-completion
Javascript function are expected to run-to-completion - This means once the function starts running,
it will run to the end of the function. However, Generators allow us to interrupt this execution and
switch to other tasks before returning back to the last interrupted task.

Async Waterfall
Async Waterfall is amazing simple and powerful technique to get out of callback hell. On top of that
it makes code readable, easy to understand and even easy to maintain and debug. Let’s take an
example of reading a json file.

Identify the steps
First divide the code into simple asynchronous step functions that need to be executed to perform a
given task. In the example of reading json file, the steps could be reading the json file and
processing the file once read. Remember each step function takes a callback as argument. The first
parameter to callback is error object. If error object is not null the waterfall stops further processing
and error handler is called with error object. which takes parameters to next step function as
argument along with arguments required.

Read the file:

Process the file:

https://colintoh.com/blog/staying-sane-with-asynchronous-programming-promises-and-generators#run-to-completion

Note that I did no specific error handling
here, I'll take benefit of async.waterfall to centralize error handling at the same place.

Also be careful that if you have (if/else/switch/...) branches in an asynchronous function, it always
call the callback one (and only one) time.

Plug everything with async.waterfall

Note how easy to understand and
maintain the code is.

The Top 10 Most Common Mistakes That Node.js Developers Make
Node.js is a free, open source runtime environment for executing JavaScript code that runs on
various platforms. It is used for highly scalable, data-intensive and real time apps due to its non-
blocking/asynchronous nature.

Like any other platform, Node.js is also vulnerable to developer problems and issues. Some of these
mistakes degrade performance, while others make Node.js appear straight out unusable for
whatever you are trying to achieve.

Mistake #1: Blocking the event loop (or the Worker Pool)
Node.js runs JavaScript code in the Event Loop (initialization and callbacks), and offers a
Worker Pool to handle expensive tasks like file I/O. Nodejs application runs in single threaded
environment. To achieve concurrency, I/O bound operations needs to be handled/run
asynchronously.

Mistake #2: Invoking a Call-back More Than Once
One common node.js issue related to using callbacks is calling them more than once. Callback
doesn’t automatically end the execution of the current function until it is last statement, so we
need to have return statement if we want to return post callback.
Example:
module.export.verifyPassword = function(user, password, callback){
if(typeof password !== ‘string’) {
done(new Error(‘password should be a string’))
return
}computeHash(password, user.passwordHashOpts, function(err, hash) {
if(err) {
done(err)
return
}
done(null, hash === user.passwordHash)
})
}
If the first “return” was commented out, passing a non-string password `to this function will still
result in “computeHash” being called. Depending on how “computeHash” deals with such a
scenario, “done” may be called multiple times, which result in unknown issues.
Mistake #3: Deeply Nesting Callbacks (“callback hell”)
Callback hell is a phenomenon that afflicts a JavaScript developer when he tries to execute
multiple asynchronous operations one after the other

By nesting callbacks in such a way, we easily end up with error-prone, hard to read, and hard
to maintain code.Soln: Best code practice to handle it

Keep your code shallow
Give your functions names
Modularize
Handle every single error
Declare your functions beforehand

Techniques to fix callback hell

Using Async.js
Using Promises
Using Async-Await
Coroutine (Promise + Generator)

Mistake #4: Expecting Callbacks to Run SynchronouslyIn Nodejs, Callback functions does not
always run synchronously.With callbacks a particular function may not run well until the task it
is waiting on is finished. The execution of the current function will run until the end without any

stop: Calling the “testTimeout” function will first print
“Begin”, then print “Waiting..” followed by the the message “Done!” after about a second.
Mistake #5: Assigning to “exports”, Instead of “module.exports”
In Nodejs, there is difference between “module.exports” and “exports”, which developers think
are same.Node.js treats each file as a small isolated module. If your package has two files,
perhaps “a.js” and “b.js”, then for “b.js” to access “a.js”’s functionality, “a.js” must export it by
adding properties to the exports object:

When this is done,
anyone requiring “a.js” will be given an object with the property function “verifyPassword”:

Howe
ver, what if we want to export this function directly, and not as the property of some object?
We can overwrite exports to do this, but we must not treat it as a global variable then:

Notice how we are
treating “exports” as a property of the module object
Mistake #6: Throwing Errors from Inside Callbacks
Handling exceptions (try-catch) does not behave as you might expect it to in asynchronous
situations. For example, if you wanted to protect a large chunk of code with lots of
asynchronous activity with one big try-catch block, it wouldn’t necessarily work:

If the
callback to “db.User.get” fired asynchronously, the scope containing the try-catch block would
have long gone out of context for it to still be able to catch those errors thrown from inside the
callback.
Mistake #7: Assuming Number to Be an Integer Datatype
Numbers in JavaScript are floating points - there is no integer data type. This will be problem if
we try to access large integer value.The following evaluates to true in Node.js:

Soln: Use big integer libraries that implement the important mathematical operations on large
precision numbers, such as node-bigint.
Mistake #8: Ignoring the Advantages of Streaming APIs
Streaming apis like using pipe etc can make nodejs application muct more performanent and
easy to handle.
Mistake #9: Using Console.log for Debugging Purposes
In Node.js, “console.log” allows you to print almost anything to the console. However, it is
strongly recommended that you avoid “console.log” in real code. Instead, use one of the
amazing libraries that are built just for this, such as debug (provide convenient ways of
enabling and disabling certain debug lines when you start the application)
Mistake #10: Not Using Supervisor Programs
Nodejs application should use power of Supervisor programs like pm2, forever, nodemon etc.
They give plenty of benefits like application will fail fast i.e. If an unexpected error occurs, do
not try to handle it, rather let your program crash and have a supervisor restart it in a few
seconds and many more.

References:
V8/Event Loop/call stack – explained very well
https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://www.toptal.com/nodejs/top-10-common-nodejs-developer-mistakes

https://www.npmjs.com/package/bignum
https://www.npmjs.com/package/debug
https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://www.toptal.com/nodejs/top-10-common-nodejs-developer-mistakes

