
BLUE-GREEN DEPLOYMENT: AN INTRODUCTION

In the current environment, it is increasingly necessary to use continuous integration and continuous
deployment (CI/CD) to stay up to date with software testing, stability, and improvements. There is
nearly constant pressure for frequent and functional software updates, and amidst these regular
updates, it’s necessary for teams to ensure high quality and to provide a good customer experience.
These pressures have led to new methods and approaches for software development and
deployment, including blue-green deployment.

Blue-green deployment is a deployment method that helps to reduce downtime and risks. It’s a
software release model that transfers traffic from a previous version to a new version by utilizing two
nearly identical production environments, called blue and green. At any given time, only one of the
environments is live, and that environment handles all production traffic. This method can be a good
solution for businesses looking to avoid downtime while reducing risks during updates.

Specifics of How Blue-Green Deployment Works
Blue-green deployment requires two environments that need to be different but also as close to
identical as possible. This can take place with two different pieces of hardware, different virtual
machines that run the same hardware, or a single operating environment that is divided into
separate zones with separate IP addresses. Additionally, this deployment method requires a router
or load balancer that routes traffic to the correct environment.

It’s helpful to walk through the details of how this type of deployment would work to better

https://blogs.bmc.com/blogs/devops-continuous-integration-delivery-deployment/
https://blogs.bmc.com/blogs/devops-continuous-integration-delivery-deployment/


understand this method. Let’s start with an example where you’re using version 1 of an app. The
environment running version 1, we’ll say the green version, would be live. The router or load
balancer would direct all users to that version. You can then develop and deploy version 2, the blue
version, to the same environment while still directing all users to the green version. At this point,
you’re able to run any smoke tests, ensuring that all aspects of version 2 are working correctly
without risks of disruption. Once version 2 is ready for full deployment, you route users to the blue
version and disconnect traffic to the green version. At this point, the blue version is live and the
green version is in standby.

If any bugs or performance issues arise with version 2, you can always reroute traffic to version 1
without any substantial interruptions or concerns. What’s more, once you’re comfortable that version
2 is working correctly and is stable, you can update the green version to version 2. This allows for
disaster recovery and allows you to begin developing additional updates as needed.

This structure allows for ongoing development, testing, and deployment and gives developers a
non-live environment for testing and deployment of the next release. The result is two environments
that are consistently transitioning between being live, being the previous version, and offering
staging for the next version.

Pros and Cons of Using Blue-Green Deployment
The key benefits that this deployment system offers are the elimination of downtime and a
reduction of risks. Because the switch from blue to green happens almost instantaneously, there is
no downtime for users. In fact, users won’t even notice when the switch happens.

Additionally, because it allows staging, rollback, and disaster recovery, it reduces the risks that are
associated with updates. This method allows for tests to take place in production and offers a full
environment for testing. This is ideal for developers, making them confident that all aspects of
updated software are working appropriately prior to launch. Plus, it’s an effective way to avoid
surprise errors, which are frustrating for users and development teams. Further, it’s reassuring for
teams to know that in a worst-case scenario, they can always reroute users back to the original
version. Finally, once the new version is stable, the new release can go to standby and can offer
recovery in the event of a disaster.

Another important benefit is the ability to deploy at any time. Because this process eliminates
downtime, it lets teams deploy whenever they want. Historically, deployments have taken place in
the middle of the night or on weekends. Not only does this have the potential of disrupting users,
but it’s also disruptive for development teams. Being able to deploy updates anytime allows for
having the entire team present and fully engage (as opposed to deploying in the middle of the night,
with a reduced and tired team). This helps to reduce errors and to ensure a smooth deployment.

While blue-green deployment offers some clear benefits, it also comes with some costs. Because
the transition from green to blue happens instantaneously, there is the potential for the transactions
or sessions taking place at the time of the switch to be lost. There are ways to potentially avoid this -
for example, some designs allow for sending those transactions to both systems and others allow
for putting a new version in read-only mode before cutover and then switching to read-write mode.
Regardless, this can be a problem area and is something for teams to acknowledge and address
before using blue-green deployment.

Another issue with this method is that not all environments have the necessary resources to



effectively utilize this method - for example, it requires N-1 data compatibility. Not all environments
have the correct uptime requirements or resources for this process. Additionally, there are costs to
running two versions at the same time. It can significantly impact the data model and other areas of
the system.

Given the pros and cons, it can be hard to determine if this system is right for your organization.
Generally, it comes down to what issues are most pressing for your software. For example, if you’re
concerned about downtime and reducing the risks of software updates, this deployment method is
likely a good choice for your team. If these concerns are less pressing, a classic swap and drop
deployment might well be a better fit.

Alternative Deployment Systems
Additionally, it’s helpful to keep in mind that blue-green deployment is not the only process that
offers the benefits of reducing downtime and risks. Another alternative is a canary release, named
for the mining practice of sending a canary into a mine to test the air quality. If the canary returned,
miners knew that the air was safe. If it did not return, they knew the air was toxic and should be
avoided. Utilizing a similar strategy, this method of deployment tests the update on a limited subset
of users before making it available to all users. By releasing new software to a limited number of
servers and then monitoring it for bugs or issues, it substantially reduces deployment risks.

Another alternative is rolling deployment. This process spreads out deployment across a few phases
by using several servers and executing different functions in server clusters. It avoids the issue of
taking the app offline. Instead, the load balancer simply stops delivering traffic to a specific server
while it’s being updated. When it’s updated and stable, another server is taken offline and updated.
This process continues until the entire system is updated and running smoothly. The benefits of this
method are that there’s always a stable version available and errors only impact a small subset of
users.

With increasing pressures to consistently update software while also maintaining quality and
maximizing customers’ experiences, it’s important for development teams to utilize effective and
efficient deployment strategies. Blue-green deployment offers a way to eliminate downtime and
reduce risks by utilizing two environments that are consistently transitioning from being live, serving
as a fallback, and serving as a space for development, testing, and staging.


