HOW TO RUN SELF-HOSTED AZURE DEVOPS BUILD/RELEASE
AGENTS

Microsoft Azure—Azure for short—is the Microsoft cloud services platform spanning laaS, PaaS, and
Saas services from simple virtualized infrastructure to data warehousing, ML, and Al platforms.

The Azure DevOps service is one such SaaS offering that offers a fully featured DevOps platform
consisting of:

e Azure Boards (Planning and Management of the Project)
e Azure Pipelines (CI/CD Pipeline)

» Azure Repos (Cloud-hosted private Git Repositories)

e Azure Test Plans (Manual and Exploratory testing tools)
» Azure Artifacts (Artifact Storage)

These platforms are augmented by a vast collection of extensions to integrate third-party tools and
platforms and extend the functionality. CI/CD pipeline is one of the core components to power a
software development process provided by the Azure Pipelines service. Azure Pipelines provides
the option to utilize Microsoft-hosted or self-hosted agents to run CI/CD jobs.

In this article, we will look at how to configure self-hosted agents to be utilized in an Azure pipeline.

(New to Azure DevOps? Start with our beginner's quide.)

https://blogs.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://blogs.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://blogs.bmc.com/blogs/azure-devops/
https://blogs.bmc.com/blogs/devops-basics-introduction/
https://blogs.bmc.com/blogs/what-is-ci-cd/
https://blogs.bmc.com/blogs/azure-devops/

Why do we need self-hosted agents?

While it may seem a bit strange to utilize a self-hosted agent with a cloud-based service, there are
some significant benefits of opting to go with a self-hosted agent.

One reason is cost. Microsoft does offer:

* One free Microsoft-hosted job with 1,800 minutes
¢ One self-hosted job with unlimited minutes

Though it may be sufficient for small-scale development, most users will inevitably need more
flexibility to run multiple concurrent builds and releases. At the time of this article's writing, a
Microsoft-hosted agent will cost $40 USD per agent while a self-hosted agent will cost only $15,
both with unlimited minutes. Thus, the self-hosted option provides cost savings when you need to
scale up even with the added management overhead.

The second reason for self-hosting is customizability, which offers you the freedom to run the agent
on any supported operating system, including Windows, Linux, and macOS. Even though Microsoft
hosted agents allow users to select a specific image type, they are limited to what is available from
Microsoft.

Additionally, agents can be configured as containers for further flexibility and can even run multiple
agents on a single host to maximize resource usage.

Running your self-hosted agent

Setting up and running a self-hosted agent is a relatively simple process, with the primary
requirement being running the correct agent for the specified operating system and underlying
architecture. In this section, we will see how to run agents on a Windows and a Linux VM.

Creating a Personal Access Token (PAT)

The first step before setting up an agent is to create a personal access token which will be used to
connect the agent to the Azure Pipeline.

Step 1. Login to Azure DevOps organization, open user settings, and select "Personal access tokens'

https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/

Preview features

Profile

Time and Locale

Permissions

Motifications

Theme

Usage

Personal access tokens
SSH public keys

Alternate credentials

Open up your terminal
window and change directory to the folder containing the downloaded file. Inflate the file to view the
contents.

First, you need to generate the agent configuration file using the interacting configuration generator
script.

Step 2. In the Personal Access Tokens screen, click on “New Token" to create a token.

Personal Access Tokens

These can be d instead of a pa 0 5 like Git or can be pa

User settings

Mewr Token
¥

Account

Token name l.
AZ Profile)
Git: https:y//

% Time and Locale

) Permissions
Preferences

® Notifications

&3 Theme

1] Usage

Security

Fp Personal access tokens
¥ S5H public keys

& Alternate credentials

@ Authorizations

Step 3. Provide a
name, expiration date, and the necessary permissions and click on Create to create the PAT.

Create a new personal access token

Mame

self-hosted-agent-token

Organization

Expiration (UTC)

30 days 12/30/2021

Scopes
Authorize the scope of access associated with this token
Scopes () Full access

Custom defined

Work Items
Work items, queries, backlogs, plans, and metadata

(] Read (] Read & write [] Read, write, & manage

Code
Source code, repositones, pull requests, and notifications

. e v - « Status

Build
Artifacts, definitions, requests, queue a build, and update build properties

v + Read & execute

Show all scopes

Create Cancel

Note: Ensure that
all the correct permissions are granted. Otherwise, you will not be able to initialize the connection. If
required, you can configure the agent to have Full access to Azure DevOps.

Create a new personal access token

Name

self-hosted-agent-token

Organization

Expiration (UTC)

30 days 12/31/2021

Scopes
Authorize the scope of access associated with this token

Scopes Full access

() Custom defined

Step 4. Once the
token is generated, securely store it as it will not be accessible later.

Success!

You have successfully added a new personal access token. Copy the token now!

self-hosted-agent-token token

Iy

Waming - Make sure you copy the abowve token now.
We don't store it and you will not be able to see it
again.

Installing & configuring the agents

Since we have created the token, we can now move into setting up the agent. Any agent
configuration can be obtained via the Pipelines Agent pools section in the organizational settings in
the Azure DevOps dashboard.

Obtaining Agent Configuration Instructions

Step 1. Navigate to the Organization Settings and select Agent pools from the Pipeline section.

Pipelines

&5 Agent pools

Settings

* Deployment pools
Il Parallel jobs

S OAuth configurations

Step 2. Select the Default agent pool. (If needed, select the agent to
other available pools or create a new pool and add the agent.)

Agent pools

P gires Cueued jobs

y Arure Pipalines

e lanied

B Defaun

L

the New Agent option to obtain the agent installation instructions.

B Default Update all agents M agnt

Jobs Agenis Details Secunty Seitings Maintenance History Analytics

n
—

No jobs have run on this agent pool

Run a pipelne on this agent pool 1o see more detals

Step 4. Select the
desired operating system and system architecture and follow the instructions provided.

Get the agent

Windows macOs

stem prerequisites

Configure your account

Configure your account by following the steps outhned here.

Download the agent

Download [y

Create the agent

PS5 C:\» mkdir agent ; cd agent

PS C:\agent> Add-Type -AssemblyName System.IO.Compression.FileSystem ;
[System.I0.Compression.ZipFile]: :ExtractToDirectory($HOME\Downloadsivsts
agent-win-x64-2.195.1.zip™, "SPWD™)

Configure the agent Detailed instruct

PS C:hagent> .‘\config.cmd

Optionally run the agent interactively

If you didn't run as a service above:

PS C:hagent> .\run.cmd

That's it!

More Information

Windows Installation

Let's see how to install the agent in Windows 10 on X64 architecture. Please refer to Microsoft's
official Windows agent guide for a complete list of prerequisites and specifications.

Step 1. Download the agent. (It will be downloaded as a zip file.)

Invoke-WebRequest -Uri
https://vstsagentpackage.azureedge.net/agent/2.195.1/vsts-agent-win-x64-2.195
.1.zip -OutFile vsts-agent-win-x64-2.195.1.zip

PS C:%» Invoke-WebRequest https://vstsagentpackage . azureedge.net/agent/2.195.1/vsts-agent
wWin-xb64-2.195.1.zip vsts-agent-win-x64-2.195.1.zip

Writing web request

Writing request stream... (Number of bytes writtem: 1318712)

Step 2. Extract the
downloaded agent to the desired destination. It is recommended that the agent is extracted to a

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/v2-windows?view=azure-devops

folder named agents in the root of the C drive (C:agents).

Create directory and navigate to the directory
New-Item -Path "C:" -Name "agents" -ItemType "directory"
Set-Location -Path "C:agents"

Extract the downloaded zip file
Add-Type -AssemblyName System.IO.Compression.FileSystem ;
::ExtractToDirectory("C:vsts-agent-win-x64-2.195.1.zip", "$PWD")

Verify the extraction
Get-ChildItem

PS C:%> New-Item
Directory: C:\

LastWriteTime Length Name

38/11/26021 11:57 PM

set-Location
Type System.I0.Compression. FileSystem ;
[oDirectory(
S C:\agentss Get-ChildItem

Directory: C:\agents

LastWriteTime Length Name

6/11/2021 11:59 PM bin
21 11:59 PM externals
2 11:16 AM 2967 config.cmd
11:16 AM 3198 run.cmd

PS C:\apgents>

Step 3. Start the
agent configuration by running the following command. (It is recommended to use Elevated
Powershell prompt.)

.config.cmd

agent v2.195.1 (commit fc94fec)

»» Connect:

Enter server URL > a5: ff azure.com/
or PAT) » PAT

W EENEE R RN R R NN RN R R

-18-agent-81

EuctessFuily added the agent
Testing agent connection.
Enter work folder (press enter for _work) =

: Settings Sawved
Enter run agent as service? (Y/N) (s enter for N) > Y
Enter User account t s tor the (press enter for NT AUTHORITY\METWORK SERVICE) »
Granting file permissions to "NT AUTHORITYANETWORK SERVICE®.
Service vstsagent. .Default.windows-18-agent-81 successfully installed
5 i .Default. win ;-18-apent -81 ccesstully set re v option
.Default . windows-18-agent -81 ssfully set to layed auto star

_.Default.windows-1@-agent-81 s ssfully configured
whether to prevent service starting immediately after figuration is finished? (Y/N) (p
enter for N) > ¥
:vagents>

You will be
required to enter configuration details such as:

e Server URL (Azure organizational URL)
» Authentication type (Here, we have used the previously created authentication token)
e Agent details, including agent-pool and agent hame

Finally, specify whether to configure the agent as a Windows service.

You will be able to see the configured Azure Pipelines Agent if you navigate to the Services section
on Windows (services.msc).

Q4 Senvices

Fie Action View Help
oM Dc= Hm »anwn
Services (Local) || <) Services (Local)

Azure Pipelines Agent Mame ’ Descriptic ™

igmt_mj Default.windoves-10- 1), Microsoft Edge Update Senvice (edgeupdate) Keeps yo
54 Microsoft Edge Update Service (edgeupdatern) Keeps yom

Stop the senvice ’., Aarsve_Selbe Ruritinme |

Festart the service S Activel Installer (RoclnstSV) Provides |
."_.:': .U.IIJvl;vyn Router Sernace Rowtes Al
o] App Readiness Gets apps
Sy Application [dentity Determin
Tk Application Infermation Facilitate:
£ Application Layer Gabeway Service Prenides :
1 Application Ma nagement Processes
AppX Deployment Senvice [AppiSVC) Provides |
Ly AssignedAccessManager Seniace Assigned,
{Zh ASUS Com Service ASUS Cor
Ok AsusCentSenice
3 Auto Time Zone Updater Automat
15}, AVCTP service This is Au
ﬁ. Azure Pipelines Agent (i Default. windows-10-agent-01)
} AzursAttestSenvics
(£ Background Intelligent Transfer Service Transfers
" Background Tasks Infrastructure Service Windows
-.'.-:': Barrier Manages ¥
{ >

.'_ Extended .sttdnddl\d lIrr
Step 4. Navigate

back to the Agent pools in the Organizational settings, and you can see the newly configured agent
as the Default pool in the Agents tab.

| Default Update all agents Haw agent

jobs Agents Details Security Settngs Masn

N Last run Current vishe Aagent wervicn Eruskded

vaindaws- 10-sgoent-00
& Ondine

Linux Installation

Installing and configuring the pipeline agent in Linux is similar to Windows. So, in this section, let's
see how to install the agent in an Ubuntu environment. Full configuration details are available in the
Microsoft documentation.

Step 1. Download the agent

wget
https://vstsagentpackage.azureedge.net/agent/2.195.1/vsts-agent-linux-x64-2.1
95.1.tar.gz

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/v2-linux?view=azure-devops

I'.l_'tp-;

ntpackage.azureedge.net (vstsagentpackage.azureedge.net)...

vatsagentpackage. azureedge .net)

Step 2. Create a
folder and extract the downloaded tar.gz file.

Create directory and navigate to the directory
mkdir agent
cd agent

Extract the downloaded zip file
tar zxf ~/Downloads/vsts-agent-linux-x64-2.195.1.tar.gz

Verify the extraction
1s

nloads$ mkdir agent
1

I_:t!-lJrlT_l._Jl@nl: -

agent configuration by running the following command

./config.sh

ubuntuoc -ubs

e Agreem

1r Everywhers cende agreement can be found at:
gent fexternals tee/license.h

Enter (Y/N) Accept the Team Eb [il Py i cense agresment now? (press enter for N) = ¥

Similar to
Windows configuration, the users will be asked to enter the server details, authentication type, and
the authentication token we created earlier. Then configure the agent details, and finally, the user

can start the agent by running the run.sh script.

Step 4 (Optional). You can configure the agent to run as a system service using the svc.sh script
located in the agent directory. Specify the user and use the install command to configure the
service.

sudo ./svc.sh install ubuntu
sudo ./svc.sh start

Defaul t.ubuntuy x2dagentyx2dal

'3 Step 5. Navigate
back to the Agent pools in the Organizational settings and then to the Default pool of the Agents tab
to verify that the new Ubuntu agent is added as a self-hosted agent.

0 Default Update all agents Mew agent

Jobs Agents Details Secunity Settings Maintenance History Analytics

Hame st Current status Agent verson

ubuntu-agent-01
® Online

21951

Running your self-hosted agent in Docker

Running the agent as a container is another option we can use to run the agent. Both Windows and
Linux are supported as container hosts.

In the following section, let's look at how to create a container image with the Azure pipeline agent
and spin up the image as a container. We will be utilizing the Docker Desktop in a Windows
environment to create a Linux (Ubuntu) based agent container.

Step 1. Create a folder named dockeragent and then create a Dockerfile within the folder with
ubuntu:18.04 as the base image with the required configurations. (The configuration is available via
Microsoft documentation.)

FROM ubuntu:18.04

To make it easier for build and release pipelines to run apt-get,

https://blogs.bmc.com/blogs/what-is-a-container-containerization-explained/
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/docker?view=azure-devops#create-and-build-the-dockerfile-1

configure apt to not require confirmation (assume the -y argument by
default)
ENV DEBIAN FRONTEND=noninteractive

RUN echo "APT::Get::Assume-Yes "true";" > /etc/apt/apt.conf.d/90assumeyes

RUN apt-get update && apt-get install -y --no-install-recommends
ca-certificates
curl
jq
git
iputils-ping
libcurl4
libicu60
libunwind8
netcat
libss11.0

& rm -rf /var/lib/apt/lists/*

RUN curl -LsS https://aka.ms/InstallAzureCLIDeb | bash
& rm -rf /var/lib/apt/lists/*

ARG TARGETARCH=amd64-—
ARG AGENT VERSION=2.194.0

WORKDIR /azp
RUN if ; then
AZP AGENTPACKAGE URL=https://vstsagentpackage.azureedge.net/agent/${AGENT VER
SION}/vsts-agent-linux-x64-${AGENT VERSION}.tar.gz;

else
AZP AGENTPACKAGE URL=https://vstsagentpackage.azureedge.net/agent/${AGENT VER
SION}/vsts-agent-linux-${TARGETARCH}-${AGENT VERSION}.tar.gz;

fi;

curl -Ls=S "$AZP AGENTPACKAGE URL" | tar -xz

COPY ./start.sh .
RUN chmod +x start.sh

ENTRYPOINT

Step 2. Create the startup script (start.sh) and put it within the same folder. Ensure that the line
endings are configured as Unix-style (LF) line endings.

fi
AZP_TOKEN FILE=/azp/.token

echo -n $AZP TOKEN > "$AZP TOKEN FILE"
fi

unset AZP_TOKEN

if ; then
mkdir -p "$AZP WORK"

fi
export AGENT ALLOW RUNASROOT="1"

cleanup() {
if ; then
print header "Cleanup. Removing Azure Pipelines agent..."

If the agent has some running jobs, the configuration removal process
will fail.
So, give it some time to finish the job.
while true; do
./config.sh remove --unattended --auth PAT --token $(cat
"$AZP TOKEN FILE") && break

echo "Retrying in 30 seconds..."
sleep 30
done
fi
}

print header() {-
lightcyan="33[1;36m"
nocolor='633[0m"
echo -e "${lightcyan}$1${nocolor}"
}

Let the agent ignore the token env variables
export VSO AGENT IGNORE=AZP TOKEN,AZP TOKEN FILE

source ./env.sh
print header "1. Configuring Azure Pipelines agent..."

./config.sh --unattended
--agent "${AZP AGENT NAME:-$(hostname)}"
--url "$AZP URL"
--auth PAT
--token $(cat "$AZP TOKEN FILE")
--pool "${AZP POOL:-Default}"”
--work "${AZP WORK: - work}"
--replace

--acceptTeeEula & wait $!
print header "2. Running Azure Pipelines agent..."

trap 'cleanup; exit 0' EXIT
trap 'cleanup; exit 130' INT
trap 'cleanup; exit 143' TERM

To be aware of TERM and INT signals call run.sh

Running it with the --once flag at the end will shut down the agent after
the build is executed
./run.sh "$@" & wait $!

Step 3. Build the Image by running the following command in the dockeragent folder.

docker build -t dockeragent:latest

5 AITILINE

SONASLINT RULES

b SORARLINT ESUE LOCATL > = & Op Lwiy . ulbuintu ., comfubuntu biondc-updot fmain oecl 1ibdculD omofl 60.2-5

LECNEENIStep 4. Create a
container using the docker run command with the newly created docker image. We can pass
environment variables when creating the container. In this instance, we will be passing the server
URL (AZP_URL), PAT token (AZP_TOKEN), and agent name (AZP_AGENT_NAME) as variables

i ity 8 o=
¥ @oho In50,Col 1 Spaces2 UTF-3 IF besh keitmready (@ Spell Seyk Vulnerability Scanner @&

docker run -e AZP_URL=https://dev.azure.com/ -e AZP_TOKEN= -e
AZP AGENT NAME=docker-agent-01 dockeragent:latest

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/docker?view=azure-devops#environment-variables

Step 5. We can
verify if the container is added as an agent by looking at the Default agent pool in the Azure DevOps
dashboard.

B Default Update all agents Mew agent

Jlobs Agents Detmls F;'v-::unl!:,' setbngs Mantenance History Analytics

Hame Current status Aqgent version Enabded

docker-agent-01

® Onilline

21940

Self-hosted agents for Azure DevOps

Self-hosted agents in Azure DevOps Pipelines offer cost savings and more flexibility to configure
and run build and release agents in any supported environment. These pipeline agents can be
utilized to extend the functionality of the CI/CD pipeline from running in bare-metal servers to VMs
and even as containers.

Related reading

* BMC DevOps Blogs

e GitHub, GitLab, Bitbucket & Azure DevOps: What's The Difference?
e AWS vs Azure vs GCP: Comparing The Big 3 Cloud Platforms

e Azure Certifications: An Introduction

e How To Set Up a Continuous Integration & Delivery (CI/CD) Pipeline
e DevOps Branching Strategies Explained

https://blogs.bmc.com/blogs/containers-vs-virtual-machines/
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/github-vs-gitlab-vs-bitbucket/
https://blogs.bmc.com/blogs/aws-vs-azure-vs-google-cloud-platforms/
https://blogs.bmc.com/blogs/azure-certifications/
https://blogs.bmc.com/blogs/ci-cd-pipeline-setup/
https://blogs.bmc.com/blogs/devops-branching-strategies/

