
AWS ECS VS EKS: WHAT’S THE DIFFERENCE? HOW TO CHOOSE?

The increased popularity of containerized applications has illustrated the need for proper container
orchestration platforms to support applications at scale.

Containers need to be managed throughout their lifecycle, and many products have been created to
fulfill this need. These container orchestration products range from open-source solutions such as
Kubernetes and Rancher to provider-specific implementations such as:

Amazon Elastic Container Service (ECS)
Azure Kubernetes Service (AKS)
Elastic Kubernetes Service (EKS)

All these different platforms come with their unique advantages and disadvantages. Amazon itself
offers an extensive array of container management services and associated tools like the ECS
mentioned above, EKS, AWS Fargate, and the newest option, EKS Anywhere.

AWS users need to evaluate these solutions carefully before selecting the right container
management platform for their needs—and we’re here to help!

(This tutorial is part of our AWS Guide. Use the right-hand menu to navigate.)

How container management works
A container is a lightweight, stand-alone, portable, and executable package that includes everything
required to run an application from the application itself to all the configurations, dependencies,
system libraries, etc. This containerization greatly simplifies the development and deployment of
applications. However, we need the following things to run containers:

https://blogs.bmc.com/blogs/what-is-a-container-containerization-explained/
https://blogs.bmc.com/blogs/kubernetes-vs-docker-swarm/
https://blogs.bmc.com/blogs/kubernetes-vs-docker-swarm/
https://blogs.bmc.com/blogs/aws-serverless-applications/


An executable environment with CPU, RAM, and storage resources
Networking to communicate between containers, other services, and the wider internet
Storage and databases
Caching, APIs, other external services
Monitoring from metrics, application and system logs, security

While containers encapsulate the application itself, the container management or an orchestration
platform provides the rest of the above facilities required throughout the lifecycle of the container.

ECS and EKS are the primary offerings by AWS that aim to provide this container management
functionality. In the following sections, we will see what exactly these two offerings bring to the
table.

What is Amazon Elastic Container Service (ECS)?
The Elastic Container Service can be construed as a simplified version of Kubernetes—but that’s
misleading. The Elastic Container Service is an AWS-opinionated, fully managed container
orchestration service. ECS is built with simplicity in mind without sacrificing management features. It
easily integrates with AWS services such as AWS Application/Network load balancers and
CloudWatch.

Amazon Elastic Container Service uses its scheduler to determine:

Where a container is run
The number of copies started
How resources are allocated

As shown in the following image, ECS follows a simple, easily understood model. Each application in
your stack (API, Thumb, Web) is defined as a service in ECS and schedules (runs) tasks (instances) on
one or more underlying hosts that meet the resource requirements defined for each service.

This model is relatively
simple to understand and implement for containerized workloads as it closely resembles a

https://blogs.bmc.com/blogs/data-lake-vs-data-warehouse-vs-database-whats-the-difference/
https://blogs.bmc.com/blogs/it-metrics/
https://blogs.bmc.com/blogs/monitoring-logging-tracing/
https://aws.amazon.com/ecs/
https://blogs.bmc.com/blogs/what-is-kubernetes


traditional server-based implementation. Thus migrating applications to ECS becomes a simple task
that only requires the containerized application, pushing the container image to the Amazon Elastic
Container Repository (ECR) and then defining the service to run the image in ECS.

Most teams can easily adapt to such a workflow. ECS also provides simple yet functional
management and monitoring tools that suit most needs.

What is Elastic Kubernetes Service (EKS)?
The Elastic Kubernetes Service is essentially a fully managed Kubernetes Cluster. The primary
difference between ECS and EKS is how they handle services such as networking and support
components.

ECS relies on AWS-provided services like ALB, Route 53, etc.,
EKS handles all these mechanisms internally, just as in any old Kubernetes cluster.

The Elastic Kubernetes Service provides all the features and flexibility of Kubernetes while
leveraging the managed nature of the service. However, all these advantages come with the
increased complexity of the overall application architecture.

EKS introduces the Kubernetes concept of Pods to deploy and manage containers while ECS
directly uses individual containers to deploy them. Pods can contain either one or more containers
with a shared resource pool and provide far more flexibility and fine-grained control over
components within a service. The below image shows that all the services (ex: proxy, service
discovery) that need to run containers are within the Kubernetes cluster.

Let's assume that our Thumb service was a combination of three separate components:

A microservice API
An image processor
A storage engine

Kubernetes allows us to run these three separate components as distinct containers within a single
Pod that makes up the Thumb service.

https://aws.amazon.com/eks/
https://blogs.bmc.com/blogs/containers-vs-kubernetes/
https://blogs.bmc.com/blogs/an-introduction-to-aws-route-53/
https://blogs.bmc.com/blogs/service-discovery/
https://blogs.bmc.com/blogs/service-discovery/
https://blogs.bmc.com/blogs/microservice-vs-api/


Containers within the pods
run collocated with one another. Furthermore, they have easy access to each other and can share
resources like storage without relying on complex configurations or external services. All these facts
make it possible for users to create more complex applications architectures with EKS.

Additionally, EKS enables users to tap into the wider Kubernetes echo-system and use add-ons like:

The networking policy provider Calico
Romana Layer 3 networking solution
CoreDNS flexible DNS service
Many other third-party add-ons and integrations

Since EKS is based on Kubernetes, users have the flexibility to move their workloads between
different Kubernetes clusters without being vendor-locked into a specific provider or platform.

What is Fargate? How does it affect all this?
Even with managed services, servers still exist, and users can decide which types of compute
options to use with ECS or EKS.

AWS Fargate is a serverless, pay-as-you-go compute engine that allows you to focus on building
applications without managing servers. This means that AWS will take over the management of the
underlying server without requiring users to create a server, install software, and keep it up to date.
With AWS Fargate, you only need to create a cluster and add a workload—then, AWS will
automatically add pre-configured servers to match your workload requirements.

Fargate is the better solution in most cases. It will not cost more than self-managed servers and,
most of the time, saves costs due to only charging for the exact usage. Therefore, users do not have
to worry about the unused capacity like in self-managed servers, which requires manually shutting
down to save costs.

However, here some notable exceptions of Fargate:

Fargate cannot be used in highly regulated environments with strict security and

https://blogs.bmc.com/blogs/kubernetes-multi-clusters/
https://blogs.bmc.com/blogs/kubernetes-multi-clusters/
https://blogs.bmc.com/blogs/vendor-lock-in/
https://aws.amazon.com/fargate/


compliance requirements. The reason is that users lose access to the underlying servers,
which they might need control over to meet those stringent regulatory requirements.
Additionally, Fargate does not support "dedicated tenancy" hosting requirements.
ECS and Fargate only support AWS VPC networking mode, which may not be suitable when
deep control over the networking layer is required.
Fargate automatically allocates resources depending on the workload with limited control
over the exact mechanism. This automatic resource allocation can lead to unexpected cost
increases, especially in R&D environments where many workloads are tested. Therefore, self-
managed servers with capacity limitations will be a better solution for these kinds of scenarios.

What about EKS Anywhere?
EKS Anywhere extends the functionality of EKS by allowing users to create and operate Kubernetes
clusters on customer-managed infrastructure with default configurations. It provides the necessary
tools to manage the cluster using the EKS console.

EKS Anywhere is built upon the Amazon EKS Distro and provides all the necessary and up-to-date
software which resides on your infrastructure. Moreover, it provides a far more reliable Kubernetes
platform compared to a fully self-managed Kubernetes cluster.

EKS Anywhere is also an excellent option to power hybrid cloud architecture while maintaining
operational consistency between the cloud and on-premises. Besides, EKS Anywhere provides the
ideal solution to keep data with on-premises infrastructure where data sovereignty is a primary
concern. It leverages AWS to manage the application architecture and delivery.

Choosing ECS vs EKS: which is right for you?
EKS is undoubtedly the more powerful platform. However, it does not mean EKS is the de facto
choice for any workload. ECS is still suitable for many workloads with its simplicity and feature set.

When to use ECS
ECS is much simpler to get started with a lower learning curve. Small organizations or teams
with limited resources will find ECS the better option to manage their container workloads
compared to the overhead associated with Kubernetes.
Tighter AWS integrations allow users to use already familiar resources like ALB, NLB, Route 53,
etc., to manage the application architectures. It helps them to get the application up and
running quickly.
ECS can be the stepping stone for Kubernetes. Rather than adapting EKS at once, users can
use ECS to implement a containerization strategy and move its workloads into a managed
service with less up-front investment.

When to use EKS
On the other hand, ECS can sometimes be too simple with limited configuration options. This is
where EKS shines. It offers far more features and integrations to build and manage workloads at any
scale.

Pods may not be required for many workloads. However, Pods offer unparalleled control over

https://aws.amazon.com/eks/eks-anywhere/


pod placement and resource sharing. This can be invaluable when dealing with most service-
based architectures.
EKS offers far more flexibility when managing the underlying resources with the flexibility to
run on EC2, Fargate, and even on-premise via EKS Anywhere.
EKS provides the ability to use any public and private container repositories.
Monitoring and management tools of ECS are limited to the ones provided by AWS. While they
are sufficient for most use cases, EKS allows greater management and monitoring capabilities
both via built-in Kubernetes tools and readily available external integrations.

All in all, the choice of the platform comes down to specific user needs. Both options have their pros
and cons, and any of them can be the right choice depending on the workload.

To sum up, it's better to go with EKS if you are familiar with Kubernetes and want to get the flexibility
and features it provides. On the other hand, you can try ECS first if you are just starting up with
containers or want a simpler solution.

Related reading
BMC DevOps Blog
AWS ECS vs AWS Lambda: What’s The Difference & How To Choose
AWS vs Azure vs GCP: Comparing The Big 3 Cloud Platforms
Kubernetes Deployments Fully Explained
The Spring Framework Beginner’s Guide: Features, Architecture & Getting Started
Explained: Monitoring & Telemetry in DevOp

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/aws-ecs-vs-aws-lambda/
https://blogs.bmc.com/blogs/aws-vs-azure-vs-google-cloud-platforms/
https://blogs.bmc.com/blogs/kubernetes-deployment/
https://blogs.bmc.com/blogs/spring-framework/
https://blogs.bmc.com/blogs/devops-monitoring-telemetry/

