
BEST PRACTICES FOR EXCEPTION HANDLING IN APACHE
KAFKA

Apache Kafka is a distributed streaming platform that enables the processing of large amounts of
data in real time. It is designed to handle high-volume, high-velocity data streams, and provides fault
tolerance, scalability, and durability.

Figure 1. Apache Kafka architecture.

It provides two main client libraries for data processing: Kafka Consumer and Kafka Streams.

https://blogs.bmc.com/blogs/data-streaming/


The default, Kafka Consumer, is a client library that allows users to read data from Kafka topics. It is
a poll-based system, which means that consumers must request data from Kafka topics by polling
for new messages. Once a message is consumed, the consumer can process it according to the
required business logic.

On the other hand, Kafka Streams is a client library that provides stream processing capabilities. It
allows users to read data from Kafka topics, transform the data, and write it back to Kafka topics or
external systems. Kafka Streams is built on top of the Kafka Consumer library and provides
additional functionalities like stateful processing, windowing, and aggregation. It is a stateful
processing engine that allows users to perform complex data transformations on continuous data
streams in real time.

Kafka is a powerful tool for processing and analyzing streaming data, but like any distributed system,
it can encounter errors and exceptions. Proper exception handling is crucial for maintaining the
reliability and fault tolerance of your Kafka Streams application. This blog post covers different
patterns and best practices for handling errors and exceptions in your event streaming applications.

Kafka error scenarios
Broadly speaking, we face two kinds of errors while processing the data streams: transient errors
and non-transient errors.

A transient error is an error that occurs once or at unpredictable intervals. Examples of such errors
are a temporary network glitch or temporarily unavailable end points. An obvious solution in such a
scenario is to retry the processing.

Non-transient errors are more persistent in nature, such as when a Kafka message fails with the
same error again and again, no matter how many times you retry. Examples of such errors are bugs
in application processing logic and parsing errors. You need to provide a mechanism to gracefully
handle these errors when they occur, so you can recover automatically when possible or shut down
when it’s truly unrecoverable.

Using Kafka offset commit management to manage errors
To effectively handle Kafka error scenarios, we need to understand the mechanism of offset commit
management. In Kafka, consumers can commit their current position in the partition to Kafka brokers
to ensure that they have consumed all the messages up to a certain point in the partition. This
process of committing the offset can be done either automatically or manually, and there are trade-
offs associated with each approach.

By default, the consumer is configured to auto-commit offsets. Using auto-commit gives you “at
least once” delivery: Kafka guarantees that no message will be missed, but duplicates are possible.
Auto-commit works as a cron with a period set through the auto.commit.interval.ms configuration
property. If the consumer crashes, then, after a restart or a rebalance, the position of all partitions
owned by the crashed consumer will be reset to the last committed offset. When this happens, the
last committed position may be as old as the auto-commit interval itself. Any messages that have
arrived since the last commit will have to be read again.

Clearly, if you want to reduce the window for duplicates, you can reduce the auto-commit interval,
but some users may want even finer control over offsets. The consumer therefore supports a

https://www.howtogeek.com/devops/what-is-a-cron-job-and-how-do-you-use-them/


commit API, which gives you full control over offsets. Note that when you use the commit API
directly, you should first disable auto-commit in the configuration by setting
the enable.auto.commit property to false.

The Kafka Streams client commits offsets based on commit.interval.ms configs (default is 30
seconds). So, even if you request a commit, commits happen regularly. In general, it's sufficient to
rely on Kafka Streams' implicit commits (requesting commits explicitly is not necessary for most
applications). The Kafka Streams client will always disable or turn off auto-committing.

Noisy Neighbor issue
This is the major problem that one encounters when there are errors/exceptions in processing Kafka
messages in a multi-tenancy environment. When one or more Runtime exceptions are not handled,
they bubble up all the way to the Kafka (Streams) thread, causing Kafka Streams to crash. In such a
scenario, since an offset is not committed, Kafka may end up re-reading the same messages again
and again, continuing to fail with the same exceptions, and crashing. This is a “Stop the World” (STW)
scenario. An important point to note here in a multi-tenancy environment: This may cause a “Noisy
Neighbor” issue by blocking the entire stream.

For example, if the consumer client happens to read data from a partition that is not in an expected
format, then it can throw an error and choose not to commit the offset. In such a scenario, the offset
is not committed, and the consumer ends up reading the same message again and again, which
triggers continuous failures ad infinitum. In a multi-tenant environment, this can cause Noisy
Neighbor issues because partitions have data from more than one tenant. Bad data from one tenant
can impact the processing of data from other tenants.

Three best practices for Kafka error handling
To avoid STW and Noisy Neighbor issues, there are some design approaches one can use.

Error log and discard the message: To avoid STW scenarios, many developers catch the1.
generic exception and error log it. The problem with this approach is that even though it avoids
the STW scenario, it results in data loss because we have dropped that message and
committed the offset at the same time. This may result in functional issues. This is definitely not
a suitable approach for exceptions caused by transient errors. Also, as exceptions are caught in
the background, errors may go unnoticed.
Dead letter topic: This approach is more suitable for non-transient errors. In scenarios where2.
some of the messages cannot be processed by applications, they are routed to error topics
and the main stream continues. We need to have monitoring and alerting in place for error
topics to resolve the issue later. This will avoid a Noisy Neighbor issue and, at the same time,
errors and exceptions won’t go unnoticed.



Figure 2. Dead letter topic.

Retry topic and retry consumer: This approach is more suitable for transient errors. In generic3.
terms, we can say the conditions required to process the message are not available when the
application tries to process the event. Adding a retry topic provides the ability to process most
messages right away, while delaying the processing of other messages until the required
conditions are met. This approach has some challenges: Related messages may get processed
out of order and duplicate processing of messages may occur (fortunately, Kafka Streams has
a mechanism to handle duplicate events).

3. Retry topic and retry consumer.

Kafka Streams error handling mechanisms
Kafka Streams defines three main categories where errors may occur:

Consuming records1.
Processing records2.
Producing records3.

Kafka Streams provides error handlers for each of these categories. In some cases, the best
approach is to acknowledge and continue; other times, it is more prudent to shut down.

Consuming records (entry level)
Kafka Streams provides this entry level exception handler: DeserializationExceptionHandler.

This error handler allows you to manage any messages that fail to deserialize, which can be caused
by corrupt data, incorrect serialization logic, or unhandled message types.



The implemented exception handler needs to return a FAIL or CONTINUE depending on the
message and the exception thrown. Returning FAIL will signal that Kafka Streams should shut down,
and returning CONTINUE will signal that it should ignore the issue and continue processing.

Kafka Streams provides built-in handlers for the same. The default configuration for this handler
is LogAndFailExceptionHandler. This exception handler will log the error and shut down Kafka
Streams until the user chooses to react to it or resume it.

Another option is to use LogAndContinueExceptionHandler. This exception handler will continue
processing the next records instead of shutting down the entire stream.

Add this error handler through Streams config:

streamsConfiguration.put(StreamsConfig.DEFAULT_DESERIALIZATION_EXCEPTION_HAND
LER_CLASS_CONFIG,SendToDeadLetterQueueExceptionHandler.class);

Let us understand the custom error handler implementation along with dead letter topic design.
Here is the code snippet that implements the DeserializationExceptionHandler and the override
handle method. This class will collect the messages for which a deserialize exception has occurred.
We will produce these messages in dead letter topic, which will have monitoring and alerting in
place. Kafka Streams will continue processing the next records, which will prevent the Noisy
Neighbor issues as well.

Figure 4. DeserializationExceptionHandler.

Producing records
ProductionExceptionHandler can be used in a scenario where errors occur while trying to produce
records from Kafka Streams to Kafka Broker.

This is very similar to DeserializationExceptionHandler, where a developer can choose to log and
continue processing or shut down Kafka Streams. This only applies to exceptions that are not
handled by Kafka Streams, such as RecordsTooLargeException. Here again, one needs to
implement the ProductionExceptionHandler interface and override the handle method. You also
need to add this error handler through Kafka Streams configuration:

streamsConfiguration.put(StreamsConfig.DEFAULT_PRODUCTION_EXCEPTION_HANDLER_C
LASS_CONFIG, StreamProducerExceptionHandler.class);



Processing records
Kafka Streams provides this message-processing-level exception handler:
StreamsUncaughtExceptionHandler.

This works for exceptions that are not handled by Kafka Streams. The processing phase can have
many types of errors, such as application bugs, transient network issues, database-related errors,
and so on. In these instances, developers must decide under which circumstances they need to
continue processing and in which circumstances they need to stop the entire stream.

You can provide an error handler for the message processing phase by implementing the
StreamsUncaughtExceptionHandler interface and overriding the handle method. The handle
method has three options to respond in case of error situations:

Replace the stream thread: This is a type of retry mechanism for transient errors, where Kafka1.
Streams kills the current stream thread and spawns a new stream thread, which again
consumes records from the last committed offset. This reprocesses the same record with the
hope of not seeing the transient error again. This can result in duplicate records depending on
the application’s processing mode determined by the PROCESSING_GUARANTEE_CONFIG
Shut down the individual stream instance: This shutsdown the individual consumer thread of2.
the Kafka Streams application experiencing the exception.
Shut down all stream instances: This shuts down all instances of a Kafka Streams3.
application with the same application-id. Kafka Streams uses a rebalance to instruct all
application instances to shut down, so even those running on another machine will receive the
signal and exit.

Below is a code snippet for the StreamsUncaughtExceptionHandler interface. This implementation
of the StreamsUncaughtExceptionHandler will keep track of the number of errors that occur within
a given timeframe. If processing errors occur within the expected timeframe, then these messages
are sent to dead letter topic and the error is logged. If the number of errors exceeds the
threshold within the provided timeframe, then the entire application will shut down.

Figure 5. StreamsUncaughtExceptionHandler.

Effective error handling in Kafka applications involves practices such as using error topics,
implementing error logging, handling errors gracefully, utilizing retry mechanisms, establishing
monitoring systems, conducting thorough testing, and ensuring proper serialization. These practices



enhance the reliability and fault tolerance of Kafka applications. It's also important to test your
exception handling code to ensure that it is working as expected. This can be done by writing unit
tests that simulate different exception scenarios and verify that the appropriate actions are taken.

By implementing effective exception handling strategies, Kafka developers can enhance the fault
tolerance, scalability, and overall reliability of their applications. Being prepared for potential failures
and gracefully handling exceptions will help ensure smooth data processing and deliver a seamless
streaming experience with Kafka.


