
WHAT IS CASSANDRA? KEY FEATURES AND ADVANTAGES

To fully appreciate Apache Cassandra and what it can do, it’s helpful to first understand NoSQL
databases and to then look more specifically at Cassandra’s architecture and capabilities. Doing so
provides a good introduction to the system, so you can determine if it’s right for your business.

(This article is part of our Cassandra Guide. Use the right-hand menu to navigate.)

What is Apache Cassandra?
Apache Cassandra is a distributed database management system that is built to handle large
amounts of data across multiple data centers and the cloud. Key features include:

Highly scalable
Offers high availability
Has no single point of failure

Written in Java, it’s a NoSQL database offering many things that other NoSQL and relational
databases cannot.

Cassandra was originally developed at Facebook for their inbox search feature. Facebook open-
sourced it in 2008, and Cassandra became part of the Apache Incubator in 2009. Since early 2010, it
has been a top-level Apache project. It’s currently a key part of the Apache Software Foundation and
can be used by anyone wanting to benefit from it.

Cassandra stands out among database systems and offers some advantages over other systems. Its
ability to handle high volumes makes it particularly beneficial for major corporations. As a result, it’s
currently being used by many large businesses including Apple, Facebook, Instagram, Uber, Spotify,

https://blogs.bmc.com/blogs/apache-cassandra-introduction/
https://blogs.bmc.com/blogs/dbms-database-management-systems/
https://blogs.bmc.com/blogs/high-availability/
https://blogs.bmc.com/blogs/python-vs-java/


Twitter, Cisco, Rackspace, eBay, and Netflix.

What is a NoSQL Database?
A NoSQL, often referred to as “not only SQL”, database is one that stores and retrieves data without
requiring data to be stored in tabular format. Unlike relational databases, which require a tabular
format, NoSQL databases allow for unstructured data. This type of database offers:

A simple design
Horizontal scaling
Extensive control over availability

NoSQL databases do not require a fixed schema, allowing for easy replication. With its simple API, I
like Cassandra for its overall consistency and its ability to handle large amounts of data.

That said, there are pros and cons of using this type of database. While NoSQL databases offer
many benefits, they also have drawbacks. Generally, NoSQL databases:

Only support simply query language (SQL)
Are just “eventually consistent
Don’t support transactions

Nevertheless, they are effective with huge amounts of data and offer easy, horizontal scaling,
making this type of system a good fit for many large businesses. Some of the most popular and
effective NoSQL databases include:

Apache Cassandra
Apache HBase
MongoDB

What makes Apache Cassandra database unique?
Cassandra is one of the most efficient and widely-used NoSQL databases. One of the key benefits of
this system is that it offers highly-available service and no single point of failure. This is key for
businesses that cannot afford to have their system go down or to lose data. With no single point of
failure, it offers truly consistent access and availability.

Another key benefit of Cassandra DB is the massive volume of data that the system can handle. It
can effectively and efficiently handle huge amounts of data across multiple servers. Plus, it is able to
fast write huge amounts of data without affecting the read efficiency. Cassandra offers users
“blazingly fast writes,” and the speed or accuracy is unaffected by large volumes of data. It is just as
fast and as accurate for large volumes of data as it is for smaller volumes.

Another reason that so many enterprises utilize Cassandra DB is its horizontal scalability. Its structure
allows users to meet sudden increases in demand, as it allows users to simply add more hardware
to accommodate additional customers and data. This makes it easy to scale without shutdowns or
major adjustments needed. Additionally, its linear scalability is one of the things that helps to
maintain the system’s quick response time.

Some other benefits of Cassandra include:

Flexible data storage. Cassandra can handle structured, semi-structured, and unstructured

https://blogs.bmc.com/blogs/sql-vs-nosql/
https://blogs.bmc.com/blogs/structured-vs-unstructured-data/
https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/


data, giving users flexibility with data storage.
Flexible data distribution. Cassandra uses multiple data centers, which allows for easy data
distribution wherever or whenever needed.
Supports ACID. The properties of ACID (atomicity, consistency, isolation, and durability) are
supported by Cassandra.

Clearly, Apache Cassandra offers some discrete benefits that other NoSQL and relational databases
cannot. With continuous availability, operational simplicity, easy data distribution across multiple
data centers, and an ability to handle massive amounts of volume, it is the database of choice for
many enterprises.

How does Cassandra work?
Apache Cassandra is a peer-to-peer system. Its distribution design is modeled on Amazon’s
DynamoDB, and its data model is based on Google’s Big Table.

The basic architecture consists of a cluster of nodes, any and all of which can accept a read or write
request. This is a key aspect of its architecture, as there are no master nodes. Instead, all nodes
communicate equally.

While nodes are the specific location where data lives on a cluster, the cluster is the complete set of
data centers where all data is stored for processing. Related nodes are grouped together in data
centers. This type of structure is built for scalability and when additional space is needed, nodes can
simply be added. The result is that the system is easy to expand, built for volume, and made to
handle concurrent users across an entire system.

Its structure also allows for data protection. To help ensure data integrity, Cassandra has a commit
log. This is a backup method and all data is written to the commit log to ensure data is not lost. The
data is then indexed and written to a memtable. The memtable is simply a data structure in the
memory where Cassandra writes. There is one active memtable per table.

When memtables reach their threshold, they are flushed on a disk and become immutable
SSTables. More simply, this means that when the commit log is full, it triggers a flush where the
contents of memtables are written to SSTables. The commit log is an important aspect of
Cassandra’s architecture because it offers a failsafe method to protect data and to provide data
integrity.

Who should use Cassandra?
If you need to store and manage large amounts of data across many servers, Cassandra could be a
good solution for your business. It’s ideal for businesses that:

Can’t afford for data to be lost
Can’t have their database down due to the outage of a single server

It’s also easy to use and easy to scale, making it ideal for businesses that are consistently growing.

At its core, Apache Cassandra is “built for scale” and can handle large amounts of data and
concurrent users across a system. You can store massive amounts of data in a decentralized system,
yet it still allows users to have control and access to their data.

Data is always accessible in Cassandra. With no single point of failure, the system offers true

https://blogs.bmc.com/blogs/cold-vs-hot-data-storage/
https://blogs.bmc.com/blogs/acid-atomic-consistent-isolated-durable/
https://blogs.bmc.com/blogs/amazon-dynamodb/
https://blogs.bmc.com/blogs/amazon-dynamodb/


continuous availability, avoiding downtime and data loss. It can be scaled by simply adding new
nodes, so there is constant uptime and no need to shut the system down to accommodate more
customers or more data. Given these benefits, it’s not surprising that so many major companies use
Apache Cassandra software.

What do you use Apache Cassandra for?
When you need to handle large amounts of data and must have dependable and fast access to it
with a system that can massively scale, Cassandra’s fault tolerance and high availability, with global
scalability, are the answer. Here are some examples of common use scenarios and applications:

e-Commerce
Cassandra supports vital retail functions, from managing catalogs and shopping carts to inventory
management. Customer expectations are high and meeting them is where Cassandra shines.
Cassandra ensures zero downtime, fast responsiveness, scalability, and powerful analytics.

Entertainment websites
Websites like Netflix and Spotify are examples of global entertainment sites that use Cassandra.
Cassandra empowers sites like these to serve millions of concurrent users with massive amounts of
streaming data, user profiles, and viewing history. Cassandra also feeds data into recommendation
engines, enhancing user experiences.

Internet of Things (IoT) and edge computing
IoT devices create massive and fast-changing data sets that require a flexible database. Cassandra
data tiering can handle “hot” data that is fresh, the summaries and statistics that make up “warm”
data, and older “cold” data that might be used for managing maintenance. New nodes can be added
without any downtime.

Authentication and fraud detection
To effectively detect security threats, Cassandra makes it possible to analyze large, heterogeneous
datasets in real-time to uncover patterns and breaks in patterns that may flag potentially fraudulent
behavior. It also supports fast user authentication, without complexity or friction.

Messaging
Cassandra facilitates the sending and receiving of messaging at scale with real-time performance,
scaling to handle heavy loads and replicating messages for easier re-routing around outages. It also
supports storing conversations, threads, and metadata around messages and conversations.

Logistics and asset management
Whether it is tracking packages, containers, vehicles, or storage locations, Cassandra scales to
handle the details of logistics operations without disruptive downtime. Tracking assets, routes,
deliveries, inventory levels, and even adding additional fields for scans and sensors, is
straightforward.



Limitations of Cassandra
Despite the power and obvious advantages of Cassandra, organizations do run into challenges in
implementing and using it.

High maintenance costs
Apache Cassandra is open source, and thus costs nothing to deploy, but ongoing development and
maintenance take time, talent, and money. Rather than wait for the development community to
extend a feature or fix a bug, you may have to invest in those changes yourself, especially if you
have service level agreements to meet.

Risks around security, regulatory compliance, and governance
Cassandra offers some security features, but they may not be adequate for your environment or the
global compliance requirements across your markets. You may need to invest in additional
capabilities and layers, particularly if you are operating in highly regulated industries and activities.

Patchwork of support and services
Your applications are likely to have been developed by a mix of open source, third-party vendors,
and internal resources, each with differing levels of expertise and availability, so implementation and
maintenance can feel ad hoc and disjointed.

Finding expertise
Talent with expertise in Cassandra is in high demand, and there’s a limited supply of people with
sufficient knowledge. People who want to gain that expertise read through open source
documentation of varying levels of quality, seek help from community boards, and invest in time-
consuming trial and error. Without the right partner, it may be difficult to get full value from a
Cassandra deployment.

Related Reading
BMC Machine Learning & Big Data Blog
MongoDB Guide, a series of articles and tutorials
Using Hadoop with Apache Cassandra
Partition Key vs Composite Key vs Clustering Columns in Cassandra
MongoDB vs Cassandra: NoSQL Databases Compared
Data Storage Explained: Data Lake vs Warehouse vs Database
CAP Theorem for Databases: Consistency, Availability & Partition Tolerance
Data Ethics & Responsibility

https://www.bmc.com/blogs/categories/machine-learning-big-data/
https://www.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/
https://www.bmc.com/blogs/hadoop-cassandra/
https://blogs.bmc.com/blogs/cassandra-clustering-columns-partition-composite-key/
https://blogs.bmc.com/blogs/mongodb-vs-cassandra/
https://www.bmc.com/blogs/data-lake-vs-data-warehouse-vs-database-whats-the-difference/
https://blogs.bmc.com/blogs/cap-theorem/
https://blogs.bmc.com/blogs/data-ethics-responsibility/

