
ANTI-PATTERNS VS PATTERNS: WHAT IS AN ANTI-PATTERN?

Jargon permeates the software development industry. Best practices. Artifacts. Scope Creep. Many
of these terms are so common as to be called overused, and it is easy to assume we understand
them because they seem so obvious. Still, we sometimes find new depth when we examine them
closely. In this post, let us muse on the "Pattern," and its somewhat lesser known counterpart, the
"Anti-Pattern."

Patterns
We all know what patterns generally are in common language, but to understand their importance
in software engineering it's important to first discuss algorithms. An algorithm is simply a way of
performing a common task, such as sorting a list of items, storing data for efficient retrieval, or
counting occurrences of an item within a data set.

Algorithms are one of the oldest, most fundamental concepts in software engineering. Indeed, on
this author's desk sits a copy of what is considered by many to be one of the most seminal works on
the subject, "Fundamental Algorithms" by Donald Knuth. The First Edition of this small tome of just
over 600 pages was first copyrighted in 1968, 50 years ago.

The text would be nearly unrecognizable to a modern programmer, as it mainly emphasizes
Calculus-based proofs of its solutions and its only code examples are provided in obscure, outdated
languages such as Algol or MIX Assembly. Despite this, much of what was covered is still used
today: singly- and double-linked lists, trees, garbage collection, etc. The details are often buried in



convenient libraries, but the concepts are the same. These algorithms have remained valid solutions
to common software engineering problems for more than 5 decades and are still going strong.

A "pattern" can be considered a more general form of an algorithm. Where an algorithm might focus
on a specific programming task, a pattern might consider challenges beyond that realm and into
areas such as reducing defect rates, increasing maintainability of code, or allowing large teams to
work more effectively together. Some common patterns include:

Factories - An evolution of early object-oriented programming concepts that eliminated the
need for the creator of an object to know everything about it ahead of time. A flowchart
application might support extensible stencil libraries by focusing on creating and organizing
"shapes," allowing the stencils themselves to manage the details of creating a simple square
vs. a complex network router icon.
Pub/Sub - A mechanism for "decoupling" applications. Rather than having a sender directly
send messages to a receiver, the sender "publishes" the messages to a topic or queue. One or
more receivers can "subscribe" to receive those messages, and the message queue handles
details such as transmission errors or resending messages. This simplifies both the sending and
receiving applications.
Public-key Cryptography - A mechanism by which two parties can communicate securely and
without interception, yet without the need to pre-arrange an exchange of secret encryption
keys. Each party maintains a pair of keys (public and private), and the public key can often be
obtained as needed rather than exchanged in advance.
Agile - A philosophy that encapsulates a set of guiding principles for software development
that emphasize customer satisfaction, embrace the need for flexibility and collaboration, and
promote the adoption of simple, sustainable development practices.

These are just four of the many common patterns in the industry, and even in this mix we can see
how they range from highly technical to broader, more process-oriented points. Factories are a very
code-oriented pattern, while pub/sub is more architectural in nature. And while public-key
cryptography has broad implications, libraries to support its operations are available for nearly every
programming language in common use today, making it generally straightforward to implement.

At the other end of the spectrum, "Agile" remains somewhat elusive: simultaneously a rallying point
and an instrument of divisiveness among developers, project managers, and other stakeholders
about exactly what it means and how it should be implemented. It is a great example of an overused
yet poorly understood term. Seeing the terms "Waterfall" or "Stand ups" in the same sentence as
"Agile" is almost always an example of misuse. Agile is a philosophy, not a software development
methodology, so it cannot be directly compared to Waterfall, nor does it directly spell out process
components such as stand ups. (Those are a component of Scrum, a methodology that implements
Agile principles, but does not represent Agile itself.)

Narrow or broad, technical or process-oriented, a good working knowledge of these patterns is an
essential component in a technologist's toolbox.

What is an Anti-Pattern?
If a "pattern" is simply a known-to-work solution to a common software engineering problem,
wouldn't an "anti-pattern" simply be the opposite? A non-Agile development methodology, or a
tightly-coupled application?



Actually, anti-patterns do not just incorporate the concept of failure to do the right thing, they also
include a set of choices that seem right at face value, but lead to trouble in the long run. Wikipedia
defines the term "Anti-pattern" as follows:

"An anti-pattern is a common response to a recurring problem that is usually ineffective and risks being
highly counterproductive."

Note the reference to "a common response." Anti-patterns are not occasional mistakes, they are
common ones, and are nearly always followed with good intentions. As with regular patterns, anti-
patterns can be broad or very specific, and when in the realms of programming languages and
frameworks, there may be literally hundreds to consider. Here are just a few of this author's high-
level, personal favorites:

Whiteboard programming challenges in software interviews
David Hansson, creator of Ruby on Rails and the Founder and CTO of Basecamp, once tweeted
"Hello, my name is David. I would fail to write bubble sort on a whiteboard. I look code up on the
internet all the time. I don't do riddles." The anti-pattern here is evaluating the wrong metrics during
an interview, such as where a typical task assignment will be "Add zip code lookup during
registration" but interview questions sound like "Sort this array in pseudocode using functional
programming concepts."

Remember the "good intentions" aspect of anti-patterns? It seems as if we are testing the candidate
on a valuable principle: knowledge of fundamentals. However, programming is often a ruthlessly
pragmatic practice, and this focus on theoretical knowledge over practical skills and experience
might cause us to choose a candidate that meets our cultural ideals, but lacks the actual skills
required to be successful in the position.

Put another way: if StackOverflow will be a regular resource used by the developer in the position, it
should be available (and used) during the interview. Homework assignments and pair programming
challenges may also be worth exploring.

All patterns and anti-patterns have valid exceptions. A developer whose job will be to make libraries
of algorithms for others to use may very well need to know the Calculus behind a mechanism. The
error here is applying this expectation universally, even to developers who will not be doing so.

Moral Hazard
In philosophical contexts, Moral Hazard is the separation of individuals from the consequences of
their decisions. This sounds like an obvious behavior to avoid, but this anti-pattern is the root cause
of many SDLC inefficiencies.

Consider the traditional QA process, in which "tickets" are addressed by developers, then passed to
QA for review before being deployed. There are two problems here. First, staffing ratios are almost
never "1 developer to 1 QA analyst," and even a handful of developers can easily exceed the
capacity of the QA team. Second, this insulates developers from the consequences of their mistakes
by making it another individual's responsibility to find them before they are released - a moral
hazard.

The effects of this anti-pattern can be subtle: if the QA team is effective, it may not directly lead to
lower quality output. It is more likely to show up in other areas such as complaints about estimation

https://en.wikipedia.org/wiki/Anti-pattern
https://twitter.com/dhh/status/834146806594433025
https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/


accuracy and missed targets. Quality and estimation accuracy suffer because developers
instinctively focus on "getting things through QA" rather than shipping high quality software. Even
with a modest defect rate of 20-30% (a number which even might be optimistic in many
organizations), the churn this produces can significantly impact team productivity.

Additional anti-patterns often arise in the attempt to solve the problem. In Scrum, it may be tempting
to make sprints longer or hold them open. But a sprint is meant to be a measure of time, not a
measure of output. This act reverses that nature, which destroys the value of other tools such as
"velocity" metrics that are based upon it. It is also common to see longer sprint planning or pre-
planning meetings to more deeply review tickets. But this attempts to convert an instinctive process
into a scientific one, forgetting that the purpose for implementing a methodology like Scrum was to
acknowledge this impossibility in the first place.

Two patterns that are often effective at resolving this issue include:

Embracing a culture of continuous improvement: "ship it when it's better, not when it's right."
(Also see "Polishing the Cannonball" below). Developers encouraged and empowered to do
this can make better decisions about how they address their tasks, and also experience a more
tangible sense of personal accomplishment.
Make developers responsible for their work product all the way through to Production
deployments. Facebook, Google, and other industry titans have all reported success with this
approach.

Polishing the Cannonball
Sometimes also known as "gold plating" or "boiling the ocean," trying to ship perfect products often
significantly increases project timelines and costs without actually increasing the value delivered. A
closely related anti-pattern is the "zombie ticket," the plaque on the arterial walls of the Backlog.
Zombie tickets are never a high enough priority to get cleaned out, but are never closed for fear of
losing the documentary record of the task.

The problem with both habits is that the metrics that support them are phantoms. Unshipped
features have zero value to customers, and tasks that do not cause enough pain to become priorities
may never be worth addressing. It is almost always better to focus available resources on regularly
delivering new, valuable features rather than on constantly looking backward on small issues that
affect very few users.

The "pattern" counterpart here is the minimally viable product (MVP), which often ends up being a bit
of a phantom itself. (MVPs are almost never as small as planned or hoped for.) However, the act of
attempting to ship an MVP is itself often an antidote to the problems listed above, so even if some
slippage does occur it is still worth the effort. Iterative development processes also address this by
emphasizing regular, predictable delivery of incremental value, reinforced by feedback from actual
end users.

Further Reading
There are enough patterns and anti-patterns in the industry to fill books, and indeed many have
been written about them. In the end, it is usually not necessary to memorize lists of them, although
developers specializing in certain languages or frameworks should be encouraged to research
those specifically targeted at those areas.



If you are interested in learning about more patterns and anti-patterns, I have found these resources
to be valuable in my own reading:

Wikipedia's "Software Design Patterns" and "Anti-Patterns" pages provide good examples of
high level topics.
SourceMaking's "Design Patterns" and "AntiPatterns" contain useful specifics about general
software engineering tasks.
Enough Rope to Shoot Yourself in the Foot: Rules for C and C++ Programming, Alan Holub,
McGraw Hill, 1995. Although this book is focused on C and C++, most of the rules it covers still
apply to nearly any modern language.

In addition, nearly every language or framework has dozens of resources available if you simply
search for "NodeJS Patterns" or similar in any search engine. I would encourage every developer to
do this for their particular fields: even when we think we know good vs. bad practices, it can
sometimes be surprising when we find ourselves following an anti-pattern - always with the best of
intentions, of course!

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Anti-pattern
https://sourcemaking.com/design_patterns
https://sourcemaking.com/antipatterns

