AMAZON SAGEMAKER: A HANDS-ON INTRODUCTION

Amazon SageMaker is a managed machine learning service (MLaaS). SageMaker lets you quickly
build and train machine learning models and deploy them directly into a hosted environment. In this
blog post, we'll cover how to get started and run SageMaker with examples.

One thing you will find with most of the examples written by Amazon for SageMaker is they are too
complicated. Most are geared toward working with handwriting analysis etc. So here we make a new
example, based upon something simpler: a spreadsheet with just 50 rows and 6 columns.

Still, SageMaker is far more complicated than Amazon Machine Learning, which we wrote about
here and here. This is because SageMaker is not a plug-n-play SaaS product. You do not simply
upload data and then run an algorithm and wait for the results.

Instead SageMaker is a hosted Jupyter Notebook (aka iPython) product. Plus they have taken parts
of Google TensorFlow and scikit-learn ML frameworks and written the SageMaker API on top of that.
This greatly simplifies TensorFlow programming.

SageMaker provides a cloud where you can run training jobs, large or small. As we show below, it
automatically spins up Docker containers and runs your training model across as many CPUs, GPUs,
and memory that you need. So it lets you write and run ML models without having to provision EC2
virtual machines yourself to do that. It does the container orchestration for you.

https://www.bmc.com/blogs/linear-regression-with-amazon-aws-machine-learning/
http://www.bmc.com/blogs/intro-to-amazon-machine-learning-with-logistic-regression/
http://scikit-learn.org/

What you Need to Know
In order to follow this code example, you need to understand Jupyter Notebooks and Python.

Jupyter is like a web page Python interpreter. It lets you write code and execute it in place. And it
lets you draw tables and graphs. With it you can write programs, hide the code, and then let other
users see the results.

Pricing
SageMaker is not free. Amazon charges you by the second. In writing this paper Amazon billed me
$190.45. If | had used it within the first two months of signing up with Amazon it would have been free.

SageMaker Notebook

To get started, navigate to the Amazon AWS Console and then SageMaker from the menu below.

&

Amazon SageMaker
Amazon Comprehend
AWS DeeplLens
Amazon Lex
Machine Learning
Amazon Polly
Rekognition

Amazon Transcribe
Amazon Translate

Then create a Notebook Instance. It will look like this:

http://jupyter.org/

Resource Groups ~

Amazon SageMaker

Dashboard
Notebook instances
Lifecycle configuration

Jobs

Resources
Models

Endpoint configuration

Endpoints

@ Feedback (@ English (US)

Services
Amazon SageMaker X

Dashboard

Notebook instances

Lifecycle configuration

Jobs

Resources
Models
Endpoint configuration

Endpoints

@ Feedback (@ English (US)

Notebook instances

Amazon SageMaker Create note

Create notebook instance

Amazon SageMaker provides pre-built fully managed notebook instances that run Jupyter notebooks. The notebook instances
include example code for common model training and hosting exercises. Learn More [

Notebook instance settings

Notebook instance name
SageMakerWalker

Maximum of 63 alphanumeric characters. Can include hyphens (-), bu

s. Must be unique within your account in a

Notebook instance type

mlLt2.medium v
1AM role
Notebook instances requir all o rvices includ| 1 3. Choose a role or let us create a role with th
AmazonSageMakerFullAcc attached
v

VPC - optional

Your notebook instance will b ker provided int &

No VPC v
Lifecycle configuration - optional
Customize yo s k enviro ent witl ipts and plugins

No configuration v
Encryption key - optional
Encrypt your not: data KMS ki a key's ARN.

No Encryption v

» Tags - optional

Resource Groups ~ *

@ Success! Your notebook instance is being created.
Open the notebook instance when status s InService and open a template notebaok to get started.

Amazon SageMaker Notebook Instances

Notebook instances

Q search notebook instances

Name Instance Creation time v Status

SageMakerwalker mlt2.medium Mar 20, 2018 10:41 UTC @ pending

Ireland ~ Support v

View details x

Create notebook instance

1 @

Actions

Use the Conda_Python3 Jupyter Kernel.

Then you wait

Create a notebook.

Upload | New~ 2

Sparkmagic (PySpark)
Sparkmagic (PySpark3) 310
Sparkmagic (Spark) o
Sparkmagic (SparkR)
conda_mxnet_p27
conda_mxnet_p36
conda_python2
conda_python3
conda_tensorflow_p27

conda_tensorflow p36

Text File
Folder

Terminal

KMeans Clustering

In this example, we do KMeans clustering. That takes an unlabeled dataset and groups them into
clusters. In this example, we take crime data from the 50 American states and group those. So we
can then show which states have the worst crime. (We did this previously using Apache Spark here.)
We will focus on getting the code working and not interpreting the results.

Download the data from here. And change these columns headings:
,crime$cluster,Murder,Assault,UrbanPop,Rape
To something easier to read:

State,crimeCluster,Murder,Assault,UrbanPop,Rape
Alabama,4,13.2,236,58,21.2
Alaska,4,10,263,48,44.5

Arizona,

Amazon $3

You need to upload the data to S3. Set the permissions so that you can read it from SageMaker. In
this example, | stored the data in the bucket crimedatawalker. Amazon S3 may then supply a URL.

Amazon will store your model and output data in S3. You heed to create an S3 bucket whose name
begins with sagemaker for that.

http://www.bmc.com/blogs/k-means-clustering-apache-spark/
https://raw.githubusercontent.com/werowe/MLexamples/master/crime_data.csv

Amazon S3 » crimedatawalker

Q. Typea prefix and press Enter to search. Press ESC to clear.

X, Upload 4 Create folder

[Name Last modified Size

[1 [crime.csv Mar 20, 2018 4:56:33 PM GMT+0100 1.4KB

Basic Approach

Our basic approach will be to read the comma-delimited data into a Pandas dataframe. Then we
create a numpy array and pass that to the SageMaker KMeans algorithm. If you have worked with
TensorFlow, you will understand that SageMaker is far easier than using that directly.

We also use SageMaker APIs to create the training model and execute the jobs on the Amazon
cloud.

The Code

You can download the full code from here. It is a SageMaker notebook.
Now we look at parts of the code.

The %sc line below is called Jupyter Magic. The %sc means run a shell command. In this case we
download the data from S3 so that the file crime.csv can be read by the program.

%S C
lwget 'https://s3-eu-west-1.amazonaws.com/crimedatawalker/crime data.csv'

Next we read the csv file crime_data.csv into a Pandas Dataframe. We convert the state values to
numbers since numpy arrays must contain only numeric values. We will also make a cross reference
so that later we can print the state name in text given the numeric code.

As the end we convert the dataframe to a numpy array of type float32. The KMeans algorithm
expects the float32 format (They call it dtype).

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

crime = pd.read csv('crime data.csv', header=0)
print(crime.head())

This subroutine converts every letter of the state name to its ASCII integer representation then adds
them together.

https://github.com/werowe/MLexamples/blob/master/KMeans.ipynb

def stateToNumber(s):

1L =20

for x in s:

1 =1+ int(hex(ord(x)),16)
return 1

Here we change the State column in the dataframe to its numeric representation.

xref = pd.DataFrame(crime)
crime=crime.apply(lambda x: stateToNumber(x))
crime.head()

Now we convert the dataframe to a Numpy array:
crimeArray = crime.as matrix().astype(np.float32)

Here we give SageMaker the name of the S3 bucket where we will keep the output. The code below
that is standard for any of the algorithms. It sets up a machine learning task.

Note that we used machine size ml.c4.8xlarge. Anyone familiar with Amazon virtual machine
subscription fees will be alarmed as a machine of that size costs a lot to use. But Amazon will not let
you use the tiny or small templates.

from sagemaker import KMeans

from sagemaker import get execution role

role = get execution role()

print(role)

bucket = "sagemakerwalkerml"

data location = "sagemakerwalkerml"

data location 's3://{}/kmeans_highlevel example/data'.format(bucket)
output location = 's3://{}/kmeans example/output'.format(bucket)
print('training data will be uploaded to: {}'.format(data location))
print('training artifacts will be uploaded to: {}'.format(output location))
kmeans = KMeans(role=role,

train_instance_ count=1,

train instance type='ml.c4.8xlarge’,

output path=output location,

k=10,

data location=data location)

Now we run this code and the Jupyter Notebook cells above it. Then we can stop there since we will
now have to wait for Amazon to complete the batch job it creates for us.

Amazon creates a job in SageMaker which we can then see in the Amazon SageMaker dashboard
(See below.). Also you will see that the cell in the notebook will have an asterisk (") next to it,
meaning it is busy. Just wait until the asterisk goes away. Then Amazon will update the display and
you can move to the next step.

Here is what it looks like when it is done.

arn:aws:iam::782976337272:role/service-role/AmazonSageMaker -

ExecutionRole-20180320T064166

training data will be uploaded to:
s3://sagemakerwalkerml/kmeans highlevel example/data
training artifacts will be uploaded to:
s3://sagemakerwalkerml/kmeans example/output

Next we drop the State name (which has already been turned into a number) from the numpy array.
Because the name by itself does not mean anything so we do not want to feed it into the Kmeans
algorithm.

slice=crimeArray

Below the magic %%time tells Jupyter that this step will take some time so wait before moving
forward. kmeans.fit() means run the model using the Numpy array kmeans.record_set(hnumpy
Array).

%%stime
kmeans. fit(kmeans.record set(slice))

Amazon will respond saying it has kicked off this job. Then we wait 10 minutes or so for it to
complete.

INFO:sagemaker:Creating training-job with name:
kmeans-2018-03-27-08-32-53-716

The SageMaker Dashhoard

Now go look at the SageMaker Dashboard and you can see the status of jobs you have kicked off.
They can take some minutes to run.

Overview

B 7
W

Notebook instance Jobs Models

Explore AWS data in your notebooks, Track training jobs at your desk or Create models
and use algorithms to create models via remotely. Leverage high-performance outputs, or imj
training jobs. AWS algorithms. models into Ar

Recent activity

Notebook instances Jobs Maodels

When the job is
done it writes this information to the SageMaker notebook. You can can see it created a Docker
container to run this algorithm.

Docker entrypoint called with argument(s): train

Reading default configuration from /opt/amazon/lib/python2.7/site-
packages/algorithm/default-input.json: {u' num gpus': u'auto’,
u'local lloyd num trials': u'auto', u' log level': u'info', u' kvstore':
u'auto', u'local lloyd init method': u'kmeans++', u'force dense': u'true',
u'epochs': u'l', u'init method': u'random', u'local lloyd tol': u'0.0001"',
u'local lloyd max iter': u'300',

u' disable wait to read': u'false', u'extra center factor': u'auto',

u'eval metrics': u'', u' num kv servers': u'l', u'mini_batch size': u'5000",
u'half life time size': u'@', u' num slices': u'l'}

Test data was not provided.
#metrics {"Metrics": {"totaltime": {"count": 1, "max": 323.91810417175293,
"sum": 323.91810417175293, "min": 323.91810417175293}, "setuptime": {"count":
1, "max": 14.310121536254883, "sum": 14.310121536254883, "min":
14.310121536254883}}, "EndTime": 1522159898.226135, "Dimensions": {"Host":

"algo-1", "Operation": "training", "Algorithm": "AWS/KMeansWebscale"},
"StartTime": 1522159898.224455}

===== Job Complete =====

CPU times: user 484 ms, sys: 40 ms, total: 524 ms

Wall time: 7min 38s

Deploy the Model to Amazon SageMaker Hosting Services
Now we deploy the model to SageMaker using kmeans.deploy().

%%stime
kmeans predictor = kmeans.deploy(initial instance count=1,
instance type='ml.m4.xlarge')

Amazon responds:

INFO:sagemaker:Creating model with name: kmeans-2018-03-27-09-07-32-599
INFO:sagemaker:Creating endpoint with name kmeans-2018-03-27-08-49-03-990

And we can see that the Notebook is busy because there is an asterisk next to the item in Jupyter.

In [*]: %%time

kmeans_predictor = kmeans.deploy(initial instance count=1,
instance type='ml.m4.xlarge’)

INFO:sagemaker:Creating model with name: kmeans-2818-83-27-14-15-53-244
INFO:sagemaker:Creating endpoint with name kmeans-2018-03-27-14-05-50-817

Validate the model

The next step is to use the model and see how well it works. We will feed 1 record into it before we
run the whole test data set against it. Here we use the same crime_data.csv data for the train and
test data set. The normal approach is to split those into 70%/30%. Then you get brand new data and
plug that in when you make predictions.

First take all the rows but drop the first column.

slice=crimeArray
slice.shape
slice

Now grab just one row for our initial test.
s=slice

Now run the predict() method. Take the results and turn it into a dictionary. Then print the results.

%%time

result = kmeans predictor.predict(s)

clusters = .float32 tensor.values for r in result]
i=0

for r in result:

out = {

"State" : crime.iloc,

"StateCode" : xref.iloc,

“closest cluster" : r.label.float32 tensor.values,

https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-test-model.html

"crimeCluster" : crime.iloc,

"Murder" : <crime.iloc,
"Assault" : crime.iloc,
"UrbanPop" : crime.iloc,
"Rape" : «crime.iloc

}

print(out)

i=1+1

Here are the results. For that first record, it has placed it in cluster 6. It also calculated the mean
squared distance, which we did not print out.

{'State': 671, 'StateCode': 'Alabama', 'closest cluster': 7.0,
‘crimeCluster': 4, 'Murder': 13.199999999999999, 'Assault': 236, 'UrbanPop':
58, 'Rape': 21.199999999999999}

And now all 50 states.

%%time

result = kmeans predictor.predict(slice)

clusters = .float32 tensor.values for r in result]
i=20

for r in result:

out = {

"State" : crime.iloc,

"StateCode" : xref.iloc,

"closest cluster" : r.label.float32 tensor.values,
"crimeCluster" : crime.iloc,

"Murder" : <crime.iloc,

"Assault" : crime.iloc,

"UrbanPop" : crime.iloc,

"Rape" : «crime.iloc

}

print(out)

i=1+1

{'State': 671, 'StateCode': 'Alabama', 'closest cluster': 1.0,
‘crimeCluster': 4, 'Murder': 13.199999999999999, 'Assault': 236, 'UrbanPop':
58, 'Rape': 21.199999999999999}

{'State': 589, 'StateCode': 'Alaska', 'closest cluster': 7.0, 'crimeCluster':
4, 'Murder': 10.0, 'Assault': 263, 'UrbanPop': 48, 'Rape': 44.5}

{'State': 724, 'StateCode': 'Arizona', 'closest cluster': 3.0,
‘crimeCluster': 4, 'Murder': 8.0999999999999996, 'Assault': 294, 'UrbanPop':
80, 'Rape': 31.0}

{'State': 820, 'StateCode': 'Arkansas', 'closest cluster': 6.0,
‘crimeCluster': 3, 'Murder': 8.8000000000000007, 'Assault': 190, 'UrbanPop':
50, 'Rape': 19.5}

{'State': 1016, 'StateCode': 'California', 'closest cluster': 3.0,
‘crimeCluster': 4, 'Murder': 9.0, 'Assault': 276, 'UrbanPop': 91, 'Rape':

40.600000000000001}

{'State': 819, 'StateCode': 'Colorado', 'closest cluster': 6.0,
‘crimeCluster': 3, 'Murder': 7.9000000000000004, 'Assault': 204, 'UrbanPop':
78, 'Rape': 38.700000000000003}

As an exercise you could run this again and drop the crimeCluster column. The data we have
already includes clusters that someone else calculated. So we should get rid of that.

Note also that you cannot rerun the steps where it creates the model unless you change the data in
some way. Because it will say the model already exists. But you can run any of the other cells over
and over as it persists the data. For example you could experiment with adding graphs or changing
the output to a dataframe to make it easier to read.

Additional Resources

Build, Train, and Deploy ML Models Quickly and Easily with Amazon SageMaker, ft. Intuit
(AIM404-R2) - AWS re:lnvent 2018 from Amazon Web Services

https://www.slideshare.net/AmazonWebServices/build-train-and-deploy-ml-models-quickly-and-easily-with-amazon-sagemaker-ft-intuit-aim404r2-aws-reinvent-2018
https://www.slideshare.net/AmazonWebServices/build-train-and-deploy-ml-models-quickly-and-easily-with-amazon-sagemaker-ft-intuit-aim404r2-aws-reinvent-2018
https://www.slideshare.net/AmazonWebServices

