
ACID EXPLAINED: ATOMIC, CONSISTENT, ISOLATED & DURABLE

I don’t think it’s an overstatement to say that data is pretty important. Data is especially important for
modern organizations. In fact, The Economist went so far as to say that data has surpassed oil as the
world’s most valuable resource, and that was back in 2017.

One of the problems with data, though, is the massive amounts of it that need to be processed on a
daily basis. There’s so much data being generated across the globe these days that we have to
come up with a new term just to express how much data there is: big data. Sure, it’s not the most
impressive-sounding term out there, but the fact remains.

With all this big data out there, organizations are seeking ways to improve how they manage it all
from a practical, computational, and security standpoint. Like Spiderman’s Uncle Ben once said:

“With great comes great responsibility.”

The best method the IT world has created for navigating the complexities of data management is
through the use of databases.

What is a database?
Databases are structured sets of data that are stored within computers. Oftentimes, databases are
stored on entire server farms filled with computers that were made specifically for the purpose of
handling that data and the processes necessary for making use of it.

Modern databases are such complex systems that management systems have been designed to

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://blogs.bmc.com/blogs/big-data/
https://en.wikipedia.org/wiki/Uncle_Ben
https://blogs.bmc.com/blogs/data-governance-data-management/
https://blogs.bmc.com/blogs/data-lake-vs-data-warehouse-vs-database-whats-the-difference/
https://blogs.bmc.com/blogs/practice-vs-process/

handle them. These database management systems (DBMS) seek to optimize and manage the
storage and retrieval of data within databases.

One of the guiding stars leading organizations to successful database management is the ACID
approach.

What is ACID?
In the context of computer science, ACID stands for:

Atomicity
Consistency
Isolation
Durability

Together, ACID is a set of guiding principles that ensure database transactions are processed
reliably. A database transaction is any operation performed within a database, such as creating a
new record or updating data within one.

Changes made within a database need to be performed with care to ensure the data within doesn’t
become corrupted. Applying the ACID properties to each modification of a database is the best way
to maintain the accuracy and reliability of a database.

Let’s look at each component of ACID.

https://blogs.bmc.com/blogs/dbms-database-management-systems/

Atomicity
In the context of databases, atomicity means that you either:

Commit to the entirety of the transaction occurring
Have no transaction at all

Essentially, an atomic transaction ensures that any commit you make finishes the entire operation
successfully. Or, in cases of a lost connection in the middle of an operation, the database is rolled
back to its state prior to the commit being initiated.

This is important for preventing crashes or outages from creating cases where the transaction was
partially finished to an unknown overall state. If a crash occurs during a transaction with no atomicity,
you can’t know exactly how far along the process was before the transaction was interrupted. By
using atomicity, you ensure that either the entire transaction is successfully completed—or that
none of it was.

Consistency
Consistency refers to maintaining data integrity constraints.

A consistent transaction will not violate integrity constraints placed on the data by the database
rules. Enforcing consistency ensures that if a database enters into an illegal state (if a violation of
data integrity constraints occurs) the process will be aborted and changes rolled back to their
previous, legal state.

Another way of ensuring consistency within a database throughout each transaction is by also
enforcing declarative constraints placed on the database.

An example of a declarative constraint might be that all customer accounts must have a positive
balance. If a transaction would bring a customer account into a negative balance, that transaction
would be rolled back. This ensures changes are successful at maintaining data integrity or they are
canceled completely.

Isolation
Isolated transactions are considered to be “serializable”, meaning each transaction happens in a
distinct order without any transactions occurring in tandem.

Any reads or writes performed on the database will not be impacted by other reads and writes of
separate transactions occurring on the same database. A global order is created with each
transaction queueing up in line to ensure that the transactions complete in their entirety before
another one begins.

Importantly, this doesn’t mean two operations can’t happen at the same time. Multiple transactions
can occur as long as those transactions have no possibility of impacting the other transactions
occurring at the same time.

Doing this can have impacts on the speed of transactions as it may force many operations to wait
before they can initiate. However, this tradeoff is worth the added data security provided by
isolation.

Isolation can be accomplished through the use of a sliding scale of permissiveness that goes
between what are called optimistic transactions and pessimistic transactions:

An optimistic transaction schema assumes that other transactions will complete without
reading or writing to the same place twice. With the optimistic schema, both transactions will
be aborted and retried in the case of a transaction hitting the same place twice.
A pessimistic transaction schema provides less liberty and will lock down resources on the
assumption that transactions will impact other ones. This results in fewer abort and retries,
but it also means that transactions are forced to wait in line for their turn more often in
comparison to the optimistic transaction approach.

Finding a sweet spot between these two ideals is often where you'll find the best overall result.

Durability
The final aspect of the ACID approach to database management is durability.

Durability ensures that changes made to the database (transactions) that are successfully
committed will survive permanently, even in the case of system failures. This ensures that the data
within the database will not be corrupted by:

Service outages
Crashes
Other cases of failure

Durability is achieved through the use of changelogs that are referenced when databases (or
portions of the database) are restarted.

ACID supports data integrity & security
When every aspect of the ACID approach is brought together successfully, databases are
maintained with the utmost data integrity and data security to ensure that they continuously provide
value to the organization. A database with corrupted data can present costly issues due to the huge
emphasis that organizations place on their data for both day-to-day operations as well as strategic
analysis.

Using ACID properties with your database will ensure your database continues to deliver valuable
data throughout operations.

Related reading
BMC Machine Learning & Big Data Blog
Data Architecture Explained: Components, Standards & Changing Architectures
CAP Theorem for Databases: Consistency, Availability & Partition Tolerance
Data Streaming Explained: Pros, Cons & How It Works
Data Ethics for Companies
3 Simple Data Monetization Strategies for Companies

https://blogs.bmc.com/blogs/data-security/
https://blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://blogs.bmc.com/blogs/data-architecture/
https://blogs.bmc.com/blogs/cap-theorem/
https://blogs.bmc.com/blogs/data-streaming/
https://blogs.bmc.com/blogs/data-ethics-responsibility/
https://blogs.bmc.com/blogs/it-strategies-weather-storms-downtime-risk/

